summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--.gitignore1
-rw-r--r--.gitmodules6
m---------lib/Arduino-Temperature-Control-Library0
-rw-r--r--lib/OneWire/OneWire.cpp557
-rw-r--r--lib/OneWire/OneWire.h229
-rw-r--r--lib/OneWire/examples/DS18x20_Temperature/DS18x20_Temperature.pde112
-rw-r--r--lib/OneWire/examples/DS2408_Switch/DS2408_Switch.pde77
-rw-r--r--lib/OneWire/examples/DS250x_PROM/DS250x_PROM.pde90
-rw-r--r--lib/OneWire/keywords.txt38
m---------lib/RTClib0
m---------lib/SD0
-rw-r--r--src/Bounce.cpp90
-rw-r--r--src/Bounce.h71
-rw-r--r--src/main.cpp347
14 files changed, 1618 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000..24e5b0a
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1 @@
+.build
diff --git a/.gitmodules b/.gitmodules
new file mode 100644
index 0000000..6ac85a3
--- /dev/null
+++ b/.gitmodules
@@ -0,0 +1,6 @@
+[submodule "lib/RTClib"]
+ path = lib/RTClib
+ url = https://github.com/adafruit/RTClib.git
+[submodule "lib/SD"]
+ path = lib/SD
+ url = https://github.com/adafruit/SD.git
diff --git a/lib/Arduino-Temperature-Control-Library b/lib/Arduino-Temperature-Control-Library
new file mode 160000
+Subproject f8d1a4d51596eb9850fd3fa1a57d04a335a75ce
diff --git a/lib/OneWire/OneWire.cpp b/lib/OneWire/OneWire.cpp
new file mode 100644
index 0000000..631813f
--- /dev/null
+++ b/lib/OneWire/OneWire.cpp
@@ -0,0 +1,557 @@
+/*
+Copyright (c) 2007, Jim Studt (original old version - many contributors since)
+
+The latest version of this library may be found at:
+ http://www.pjrc.com/teensy/td_libs_OneWire.html
+
+OneWire has been maintained by Paul Stoffregen (paul@pjrc.com) since
+January 2010. At the time, it was in need of many bug fixes, but had
+been abandoned the original author (Jim Studt). None of the known
+contributors were interested in maintaining OneWire. Paul typically
+works on OneWire every 6 to 12 months. Patches usually wait that
+long. If anyone is interested in more actively maintaining OneWire,
+please contact Paul.
+
+Version 2.2:
+ Teensy 3.0 compatibility, Paul Stoffregen, paul@pjrc.com
+ Arduino Due compatibility, http://arduino.cc/forum/index.php?topic=141030
+ Fix DS18B20 example negative temperature
+ Fix DS18B20 example's low res modes, Ken Butcher
+ Improve reset timing, Mark Tillotson
+ Add const qualifiers, Bertrik Sikken
+ Add initial value input to crc16, Bertrik Sikken
+ Add target_search() function, Scott Roberts
+
+Version 2.1:
+ Arduino 1.0 compatibility, Paul Stoffregen
+ Improve temperature example, Paul Stoffregen
+ DS250x_PROM example, Guillermo Lovato
+ PIC32 (chipKit) compatibility, Jason Dangel, dangel.jason AT gmail.com
+ Improvements from Glenn Trewitt:
+ - crc16() now works
+ - check_crc16() does all of calculation/checking work.
+ - Added read_bytes() and write_bytes(), to reduce tedious loops.
+ - Added ds2408 example.
+ Delete very old, out-of-date readme file (info is here)
+
+Version 2.0: Modifications by Paul Stoffregen, January 2010:
+http://www.pjrc.com/teensy/td_libs_OneWire.html
+ Search fix from Robin James
+ http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27
+ Use direct optimized I/O in all cases
+ Disable interrupts during timing critical sections
+ (this solves many random communication errors)
+ Disable interrupts during read-modify-write I/O
+ Reduce RAM consumption by eliminating unnecessary
+ variables and trimming many to 8 bits
+ Optimize both crc8 - table version moved to flash
+
+Modified to work with larger numbers of devices - avoids loop.
+Tested in Arduino 11 alpha with 12 sensors.
+26 Sept 2008 -- Robin James
+http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27
+
+Updated to work with arduino-0008 and to include skip() as of
+2007/07/06. --RJL20
+
+Modified to calculate the 8-bit CRC directly, avoiding the need for
+the 256-byte lookup table to be loaded in RAM. Tested in arduino-0010
+-- Tom Pollard, Jan 23, 2008
+
+Jim Studt's original library was modified by Josh Larios.
+
+Tom Pollard, pollard@alum.mit.edu, contributed around May 20, 2008
+
+Permission is hereby granted, free of charge, to any person obtaining
+a copy of this software and associated documentation files (the
+"Software"), to deal in the Software without restriction, including
+without limitation the rights to use, copy, modify, merge, publish,
+distribute, sublicense, and/or sell copies of the Software, and to
+permit persons to whom the Software is furnished to do so, subject to
+the following conditions:
+
+The above copyright notice and this permission notice shall be
+included in all copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
+LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
+OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+
+Much of the code was inspired by Derek Yerger's code, though I don't
+think much of that remains. In any event that was..
+ (copyleft) 2006 by Derek Yerger - Free to distribute freely.
+
+The CRC code was excerpted and inspired by the Dallas Semiconductor
+sample code bearing this copyright.
+//---------------------------------------------------------------------------
+// Copyright (C) 2000 Dallas Semiconductor Corporation, All Rights Reserved.
+//
+// Permission is hereby granted, free of charge, to any person obtaining a
+// copy of this software and associated documentation files (the "Software"),
+// to deal in the Software without restriction, including without limitation
+// the rights to use, copy, modify, merge, publish, distribute, sublicense,
+// and/or sell copies of the Software, and to permit persons to whom the
+// Software is furnished to do so, subject to the following conditions:
+//
+// The above copyright notice and this permission notice shall be included
+// in all copies or substantial portions of the Software.
+//
+// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+// IN NO EVENT SHALL DALLAS SEMICONDUCTOR BE LIABLE FOR ANY CLAIM, DAMAGES
+// OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+// OTHER DEALINGS IN THE SOFTWARE.
+//
+// Except as contained in this notice, the name of Dallas Semiconductor
+// shall not be used except as stated in the Dallas Semiconductor
+// Branding Policy.
+//--------------------------------------------------------------------------
+*/
+
+#include "OneWire.h"
+
+
+OneWire::OneWire(uint8_t pin)
+{
+ pinMode(pin, INPUT);
+ bitmask = PIN_TO_BITMASK(pin);
+ baseReg = PIN_TO_BASEREG(pin);
+#if ONEWIRE_SEARCH
+ reset_search();
+#endif
+}
+
+
+// Perform the onewire reset function. We will wait up to 250uS for
+// the bus to come high, if it doesn't then it is broken or shorted
+// and we return a 0;
+//
+// Returns 1 if a device asserted a presence pulse, 0 otherwise.
+//
+uint8_t OneWire::reset(void)
+{
+ IO_REG_TYPE mask = bitmask;
+ volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg;
+ uint8_t r;
+ uint8_t retries = 125;
+
+ noInterrupts();
+ DIRECT_MODE_INPUT(reg, mask);
+ interrupts();
+ // wait until the wire is high... just in case
+ do {
+ if (--retries == 0) return 0;
+ delayMicroseconds(2);
+ } while ( !DIRECT_READ(reg, mask));
+
+ noInterrupts();
+ DIRECT_WRITE_LOW(reg, mask);
+ DIRECT_MODE_OUTPUT(reg, mask); // drive output low
+ interrupts();
+ delayMicroseconds(480);
+ noInterrupts();
+ DIRECT_MODE_INPUT(reg, mask); // allow it to float
+ delayMicroseconds(70);
+ r = !DIRECT_READ(reg, mask);
+ interrupts();
+ delayMicroseconds(410);
+ return r;
+}
+
+//
+// Write a bit. Port and bit is used to cut lookup time and provide
+// more certain timing.
+//
+void OneWire::write_bit(uint8_t v)
+{
+ IO_REG_TYPE mask=bitmask;
+ volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg;
+
+ if (v & 1) {
+ noInterrupts();
+ DIRECT_WRITE_LOW(reg, mask);
+ DIRECT_MODE_OUTPUT(reg, mask); // drive output low
+ delayMicroseconds(10);
+ DIRECT_WRITE_HIGH(reg, mask); // drive output high
+ interrupts();
+ delayMicroseconds(55);
+ } else {
+ noInterrupts();
+ DIRECT_WRITE_LOW(reg, mask);
+ DIRECT_MODE_OUTPUT(reg, mask); // drive output low
+ delayMicroseconds(65);
+ DIRECT_WRITE_HIGH(reg, mask); // drive output high
+ interrupts();
+ delayMicroseconds(5);
+ }
+}
+
+//
+// Read a bit. Port and bit is used to cut lookup time and provide
+// more certain timing.
+//
+uint8_t OneWire::read_bit(void)
+{
+ IO_REG_TYPE mask=bitmask;
+ volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg;
+ uint8_t r;
+
+ noInterrupts();
+ DIRECT_MODE_OUTPUT(reg, mask);
+ DIRECT_WRITE_LOW(reg, mask);
+ delayMicroseconds(3);
+ DIRECT_MODE_INPUT(reg, mask); // let pin float, pull up will raise
+ delayMicroseconds(10);
+ r = DIRECT_READ(reg, mask);
+ interrupts();
+ delayMicroseconds(53);
+ return r;
+}
+
+//
+// Write a byte. The writing code uses the active drivers to raise the
+// pin high, if you need power after the write (e.g. DS18S20 in
+// parasite power mode) then set 'power' to 1, otherwise the pin will
+// go tri-state at the end of the write to avoid heating in a short or
+// other mishap.
+//
+void OneWire::write(uint8_t v, uint8_t power /* = 0 */) {
+ uint8_t bitMask;
+
+ for (bitMask = 0x01; bitMask; bitMask <<= 1) {
+ OneWire::write_bit( (bitMask & v)?1:0);
+ }
+ if ( !power) {
+ noInterrupts();
+ DIRECT_MODE_INPUT(baseReg, bitmask);
+ DIRECT_WRITE_LOW(baseReg, bitmask);
+ interrupts();
+ }
+}
+
+void OneWire::write_bytes(const uint8_t *buf, uint16_t count, bool power /* = 0 */) {
+ for (uint16_t i = 0 ; i < count ; i++)
+ write(buf[i]);
+ if (!power) {
+ noInterrupts();
+ DIRECT_MODE_INPUT(baseReg, bitmask);
+ DIRECT_WRITE_LOW(baseReg, bitmask);
+ interrupts();
+ }
+}
+
+//
+// Read a byte
+//
+uint8_t OneWire::read() {
+ uint8_t bitMask;
+ uint8_t r = 0;
+
+ for (bitMask = 0x01; bitMask; bitMask <<= 1) {
+ if ( OneWire::read_bit()) r |= bitMask;
+ }
+ return r;
+}
+
+void OneWire::read_bytes(uint8_t *buf, uint16_t count) {
+ for (uint16_t i = 0 ; i < count ; i++)
+ buf[i] = read();
+}
+
+//
+// Do a ROM select
+//
+void OneWire::select(const uint8_t rom[8])
+{
+ uint8_t i;
+
+ write(0x55); // Choose ROM
+
+ for (i = 0; i < 8; i++) write(rom[i]);
+}
+
+//
+// Do a ROM skip
+//
+void OneWire::skip()
+{
+ write(0xCC); // Skip ROM
+}
+
+void OneWire::depower()
+{
+ noInterrupts();
+ DIRECT_MODE_INPUT(baseReg, bitmask);
+ interrupts();
+}
+
+#if ONEWIRE_SEARCH
+
+//
+// You need to use this function to start a search again from the beginning.
+// You do not need to do it for the first search, though you could.
+//
+void OneWire::reset_search()
+{
+ // reset the search state
+ LastDiscrepancy = 0;
+ LastDeviceFlag = FALSE;
+ LastFamilyDiscrepancy = 0;
+ for(int i = 7; ; i--) {
+ ROM_NO[i] = 0;
+ if ( i == 0) break;
+ }
+}
+
+// Setup the search to find the device type 'family_code' on the next call
+// to search(*newAddr) if it is present.
+//
+void OneWire::target_search(uint8_t family_code)
+{
+ // set the search state to find SearchFamily type devices
+ ROM_NO[0] = family_code;
+ for (uint8_t i = 1; i < 8; i++)
+ ROM_NO[i] = 0;
+ LastDiscrepancy = 64;
+ LastFamilyDiscrepancy = 0;
+ LastDeviceFlag = FALSE;
+}
+
+//
+// Perform a search. If this function returns a '1' then it has
+// enumerated the next device and you may retrieve the ROM from the
+// OneWire::address variable. If there are no devices, no further
+// devices, or something horrible happens in the middle of the
+// enumeration then a 0 is returned. If a new device is found then
+// its address is copied to newAddr. Use OneWire::reset_search() to
+// start over.
+//
+// --- Replaced by the one from the Dallas Semiconductor web site ---
+//--------------------------------------------------------------------------
+// Perform the 1-Wire Search Algorithm on the 1-Wire bus using the existing
+// search state.
+// Return TRUE : device found, ROM number in ROM_NO buffer
+// FALSE : device not found, end of search
+//
+uint8_t OneWire::search(uint8_t *newAddr)
+{
+ uint8_t id_bit_number;
+ uint8_t last_zero, rom_byte_number, search_result;
+ uint8_t id_bit, cmp_id_bit;
+
+ unsigned char rom_byte_mask, search_direction;
+
+ // initialize for search
+ id_bit_number = 1;
+ last_zero = 0;
+ rom_byte_number = 0;
+ rom_byte_mask = 1;
+ search_result = 0;
+
+ // if the last call was not the last one
+ if (!LastDeviceFlag)
+ {
+ // 1-Wire reset
+ if (!reset())
+ {
+ // reset the search
+ LastDiscrepancy = 0;
+ LastDeviceFlag = FALSE;
+ LastFamilyDiscrepancy = 0;
+ return FALSE;
+ }
+
+ // issue the search command
+ write(0xF0);
+
+ // loop to do the search
+ do
+ {
+ // read a bit and its complement
+ id_bit = read_bit();
+ cmp_id_bit = read_bit();
+
+ // check for no devices on 1-wire
+ if ((id_bit == 1) && (cmp_id_bit == 1))
+ break;
+ else
+ {
+ // all devices coupled have 0 or 1
+ if (id_bit != cmp_id_bit)
+ search_direction = id_bit; // bit write value for search
+ else
+ {
+ // if this discrepancy if before the Last Discrepancy
+ // on a previous next then pick the same as last time
+ if (id_bit_number < LastDiscrepancy)
+ search_direction = ((ROM_NO[rom_byte_number] & rom_byte_mask) > 0);
+ else
+ // if equal to last pick 1, if not then pick 0
+ search_direction = (id_bit_number == LastDiscrepancy);
+
+ // if 0 was picked then record its position in LastZero
+ if (search_direction == 0)
+ {
+ last_zero = id_bit_number;
+
+ // check for Last discrepancy in family
+ if (last_zero < 9)
+ LastFamilyDiscrepancy = last_zero;
+ }
+ }
+
+ // set or clear the bit in the ROM byte rom_byte_number
+ // with mask rom_byte_mask
+ if (search_direction == 1)
+ ROM_NO[rom_byte_number] |= rom_byte_mask;
+ else
+ ROM_NO[rom_byte_number] &= ~rom_byte_mask;
+
+ // serial number search direction write bit
+ write_bit(search_direction);
+
+ // increment the byte counter id_bit_number
+ // and shift the mask rom_byte_mask
+ id_bit_number++;
+ rom_byte_mask <<= 1;
+
+ // if the mask is 0 then go to new SerialNum byte rom_byte_number and reset mask
+ if (rom_byte_mask == 0)
+ {
+ rom_byte_number++;
+ rom_byte_mask = 1;
+ }
+ }
+ }
+ while(rom_byte_number < 8); // loop until through all ROM bytes 0-7
+
+ // if the search was successful then
+ if (!(id_bit_number < 65))
+ {
+ // search successful so set LastDiscrepancy,LastDeviceFlag,search_result
+ LastDiscrepancy = last_zero;
+
+ // check for last device
+ if (LastDiscrepancy == 0)
+ LastDeviceFlag = TRUE;
+
+ search_result = TRUE;
+ }
+ }
+
+ // if no device found then reset counters so next 'search' will be like a first
+ if (!search_result || !ROM_NO[0])
+ {
+ LastDiscrepancy = 0;
+ LastDeviceFlag = FALSE;
+ LastFamilyDiscrepancy = 0;
+ search_result = FALSE;
+ }
+ for (int i = 0; i < 8; i++) newAddr[i] = ROM_NO[i];
+ return search_result;
+ }
+
+#endif
+
+#if ONEWIRE_CRC
+// The 1-Wire CRC scheme is described in Maxim Application Note 27:
+// "Understanding and Using Cyclic Redundancy Checks with Maxim iButton Products"
+//
+
+#if ONEWIRE_CRC8_TABLE
+// This table comes from Dallas sample code where it is freely reusable,
+// though Copyright (C) 2000 Dallas Semiconductor Corporation
+static const uint8_t PROGMEM dscrc_table[] = {
+ 0, 94,188,226, 97, 63,221,131,194,156,126, 32,163,253, 31, 65,
+ 157,195, 33,127,252,162, 64, 30, 95, 1,227,189, 62, 96,130,220,
+ 35,125,159,193, 66, 28,254,160,225,191, 93, 3,128,222, 60, 98,
+ 190,224, 2, 92,223,129, 99, 61,124, 34,192,158, 29, 67,161,255,
+ 70, 24,250,164, 39,121,155,197,132,218, 56,102,229,187, 89, 7,
+ 219,133,103, 57,186,228, 6, 88, 25, 71,165,251,120, 38,196,154,
+ 101, 59,217,135, 4, 90,184,230,167,249, 27, 69,198,152,122, 36,
+ 248,166, 68, 26,153,199, 37,123, 58,100,134,216, 91, 5,231,185,
+ 140,210, 48,110,237,179, 81, 15, 78, 16,242,172, 47,113,147,205,
+ 17, 79,173,243,112, 46,204,146,211,141,111, 49,178,236, 14, 80,
+ 175,241, 19, 77,206,144,114, 44,109, 51,209,143, 12, 82,176,238,
+ 50,108,142,208, 83, 13,239,177,240,174, 76, 18,145,207, 45,115,
+ 202,148,118, 40,171,245, 23, 73, 8, 86,180,234,105, 55,213,139,
+ 87, 9,235,181, 54,104,138,212,149,203, 41,119,244,170, 72, 22,
+ 233,183, 85, 11,136,214, 52,106, 43,117,151,201, 74, 20,246,168,
+ 116, 42,200,150, 21, 75,169,247,182,232, 10, 84,215,137,107, 53};
+
+//
+// Compute a Dallas Semiconductor 8 bit CRC. These show up in the ROM
+// and the registers. (note: this might better be done without to
+// table, it would probably be smaller and certainly fast enough
+// compared to all those delayMicrosecond() calls. But I got
+// confused, so I use this table from the examples.)
+//
+uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len)
+{
+ uint8_t crc = 0;
+
+ while (len--) {
+ crc = pgm_read_byte(dscrc_table + (crc ^ *addr++));
+ }
+ return crc;
+}
+#else
+//
+// Compute a Dallas Semiconductor 8 bit CRC directly.
+// this is much slower, but much smaller, than the lookup table.
+//
+uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len)
+{
+ uint8_t crc = 0;
+
+ while (len--) {
+ uint8_t inbyte = *addr++;
+ for (uint8_t i = 8; i; i--) {
+ uint8_t mix = (crc ^ inbyte) & 0x01;
+ crc >>= 1;
+ if (mix) crc ^= 0x8C;
+ inbyte >>= 1;
+ }
+ }
+ return crc;
+}
+#endif
+
+#if ONEWIRE_CRC16
+bool OneWire::check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc)
+{
+ crc = ~crc16(input, len, crc);
+ return (crc & 0xFF) == inverted_crc[0] && (crc >> 8) == inverted_crc[1];
+}
+
+uint16_t OneWire::crc16(const uint8_t* input, uint16_t len, uint16_t crc)
+{
+ static const uint8_t oddparity[16] =
+ { 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 };
+
+ for (uint16_t i = 0 ; i < len ; i++) {
+ // Even though we're just copying a byte from the input,
+ // we'll be doing 16-bit computation with it.
+ uint16_t cdata = input[i];
+ cdata = (cdata ^ crc) & 0xff;
+ crc >>= 8;
+
+ if (oddparity[cdata & 0x0F] ^ oddparity[cdata >> 4])
+ crc ^= 0xC001;
+
+ cdata <<= 6;
+ crc ^= cdata;
+ cdata <<= 1;
+ crc ^= cdata;
+ }
+ return crc;
+}
+#endif
+
+#endif
diff --git a/lib/OneWire/OneWire.h b/lib/OneWire/OneWire.h
new file mode 100644
index 0000000..916c529
--- /dev/null
+++ b/lib/OneWire/OneWire.h
@@ -0,0 +1,229 @@
+#ifndef OneWire_h
+#define OneWire_h
+
+#include <inttypes.h>
+
+#if ARDUINO >= 100
+#include "Arduino.h" // for delayMicroseconds, digitalPinToBitMask, etc
+#else
+#include "WProgram.h" // for delayMicroseconds
+#include "pins_arduino.h" // for digitalPinToBitMask, etc
+#endif
+
+// You can exclude certain features from OneWire. In theory, this
+// might save some space. In practice, the compiler automatically
+// removes unused code (technically, the linker, using -fdata-sections
+// and -ffunction-sections when compiling, and Wl,--gc-sections
+// when linking), so most of these will not result in any code size
+// reduction. Well, unless you try to use the missing features
+// and redesign your program to not need them! ONEWIRE_CRC8_TABLE
+// is the exception, because it selects a fast but large algorithm
+// or a small but slow algorithm.
+
+// you can exclude onewire_search by defining that to 0
+#ifndef ONEWIRE_SEARCH
+#define ONEWIRE_SEARCH 1
+#endif
+
+// You can exclude CRC checks altogether by defining this to 0
+#ifndef ONEWIRE_CRC
+#define ONEWIRE_CRC 1
+#endif
+
+// Select the table-lookup method of computing the 8-bit CRC
+// by setting this to 1. The lookup table enlarges code size by
+// about 250 bytes. It does NOT consume RAM (but did in very
+// old versions of OneWire). If you disable this, a slower
+// but very compact algorithm is used.
+#ifndef ONEWIRE_CRC8_TABLE
+#define ONEWIRE_CRC8_TABLE 1
+#endif
+
+// You can allow 16-bit CRC checks by defining this to 1
+// (Note that ONEWIRE_CRC must also be 1.)
+#ifndef ONEWIRE_CRC16
+#define ONEWIRE_CRC16 1
+#endif
+
+#define FALSE 0
+#define TRUE 1
+
+// Platform specific I/O definitions
+
+#if defined(__AVR__)
+#define PIN_TO_BASEREG(pin) (portInputRegister(digitalPinToPort(pin)))
+#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
+#define IO_REG_TYPE uint8_t
+#define IO_REG_ASM asm("r30")
+#define DIRECT_READ(base, mask) (((*(base)) & (mask)) ? 1 : 0)
+#define DIRECT_MODE_INPUT(base, mask) ((*((base)+1)) &= ~(mask))
+#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)+1)) |= (mask))
+#define DIRECT_WRITE_LOW(base, mask) ((*((base)+2)) &= ~(mask))
+#define DIRECT_WRITE_HIGH(base, mask) ((*((base)+2)) |= (mask))
+
+#elif defined(__MK20DX128__)
+#define PIN_TO_BASEREG(pin) (portOutputRegister(pin))
+#define PIN_TO_BITMASK(pin) (1)
+#define IO_REG_TYPE uint8_t
+#define IO_REG_ASM
+#define DIRECT_READ(base, mask) (*((base)+512))
+#define DIRECT_MODE_INPUT(base, mask) (*((base)+640) = 0)
+#define DIRECT_MODE_OUTPUT(base, mask) (*((base)+640) = 1)
+#define DIRECT_WRITE_LOW(base, mask) (*((base)+256) = 1)
+#define DIRECT_WRITE_HIGH(base, mask) (*((base)+128) = 1)
+
+#elif defined(__SAM3X8E__)
+// Arduino 1.5.1 may have a bug in delayMicroseconds() on Arduino Due.
+// http://arduino.cc/forum/index.php/topic,141030.msg1076268.html#msg1076268
+// If you have trouble with OneWire on Arduino Due, please check the
+// status of delayMicroseconds() before reporting a bug in OneWire!
+#define PIN_TO_BASEREG(pin) (&(digitalPinToPort(pin)->PIO_PER))
+#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
+#define IO_REG_TYPE uint32_t
+#define IO_REG_ASM
+#define DIRECT_READ(base, mask) (((*((base)+15)) & (mask)) ? 1 : 0)
+#define DIRECT_MODE_INPUT(base, mask) ((*((base)+5)) = (mask))
+#define DIRECT_MODE_OUTPUT(base, mask) ((*((base)+4)) = (mask))
+#define DIRECT_WRITE_LOW(base, mask) ((*((base)+13)) = (mask))
+#define DIRECT_WRITE_HIGH(base, mask) ((*((base)+12)) = (mask))
+#ifndef PROGMEM
+#define PROGMEM
+#endif
+#ifndef pgm_read_byte
+#define pgm_read_byte(addr) (*(const uint8_t *)(addr))
+#endif
+
+#elif defined(__PIC32MX__)
+#define PIN_TO_BASEREG(pin) (portModeRegister(digitalPinToPort(pin)))
+#define PIN_TO_BITMASK(pin) (digitalPinToBitMask(pin))
+#define IO_REG_TYPE uint32_t
+#define IO_REG_ASM
+#define DIRECT_READ(base, mask) (((*(base+4)) & (mask)) ? 1 : 0) //PORTX + 0x10
+#define DIRECT_MODE_INPUT(base, mask) ((*(base+2)) = (mask)) //TRISXSET + 0x08
+#define DIRECT_MODE_OUTPUT(base, mask) ((*(base+1)) = (mask)) //TRISXCLR + 0x04
+#define DIRECT_WRITE_LOW(base, mask) ((*(base+8+1)) = (mask)) //LATXCLR + 0x24
+#define DIRECT_WRITE_HIGH(base, mask) ((*(base+8+2)) = (mask)) //LATXSET + 0x28
+
+#else
+#error "Please define I/O register types here"
+#endif
+
+
+class OneWire
+{
+ private:
+ IO_REG_TYPE bitmask;
+ volatile IO_REG_TYPE *baseReg;
+
+#if ONEWIRE_SEARCH
+ // global search state
+ unsigned char ROM_NO[8];
+ uint8_t LastDiscrepancy;
+ uint8_t LastFamilyDiscrepancy;
+ uint8_t LastDeviceFlag;
+#endif
+
+ public:
+ OneWire( uint8_t pin);
+
+ // Perform a 1-Wire reset cycle. Returns 1 if a device responds
+ // with a presence pulse. Returns 0 if there is no device or the
+ // bus is shorted or otherwise held low for more than 250uS
+ uint8_t reset(void);
+
+ // Issue a 1-Wire rom select command, you do the reset first.
+ void select(const uint8_t rom[8]);
+
+ // Issue a 1-Wire rom skip command, to address all on bus.
+ void skip(void);
+
+ // Write a byte. If 'power' is one then the wire is held high at
+ // the end for parasitically powered devices. You are responsible
+ // for eventually depowering it by calling depower() or doing
+ // another read or write.
+ void write(uint8_t v, uint8_t power = 0);
+
+ void write_bytes(const uint8_t *buf, uint16_t count, bool power = 0);
+
+ // Read a byte.
+ uint8_t read(void);
+
+ void read_bytes(uint8_t *buf, uint16_t count);
+
+ // Write a bit. The bus is always left powered at the end, see
+ // note in write() about that.
+ void write_bit(uint8_t v);
+
+ // Read a bit.
+ uint8_t read_bit(void);
+
+ // Stop forcing power onto the bus. You only need to do this if
+ // you used the 'power' flag to write() or used a write_bit() call
+ // and aren't about to do another read or write. You would rather
+ // not leave this powered if you don't have to, just in case
+ // someone shorts your bus.
+ void depower(void);
+
+#if ONEWIRE_SEARCH
+ // Clear the search state so that if will start from the beginning again.
+ void reset_search();
+
+ // Setup the search to find the device type 'family_code' on the next call
+ // to search(*newAddr) if it is present.
+ void target_search(uint8_t family_code);
+
+ // Look for the next device. Returns 1 if a new address has been
+ // returned. A zero might mean that the bus is shorted, there are
+ // no devices, or you have already retrieved all of them. It
+ // might be a good idea to check the CRC to make sure you didn't
+ // get garbage. The order is deterministic. You will always get
+ // the same devices in the same order.
+ uint8_t search(uint8_t *newAddr);
+#endif
+
+#if ONEWIRE_CRC
+ // Compute a Dallas Semiconductor 8 bit CRC, these are used in the
+ // ROM and scratchpad registers.
+ static uint8_t crc8(const uint8_t *addr, uint8_t len);
+
+#if ONEWIRE_CRC16
+ // Compute the 1-Wire CRC16 and compare it against the received CRC.
+ // Example usage (reading a DS2408):
+ // // Put everything in a buffer so we can compute the CRC easily.
+ // uint8_t buf[13];
+ // buf[0] = 0xF0; // Read PIO Registers
+ // buf[1] = 0x88; // LSB address
+ // buf[2] = 0x00; // MSB address
+ // WriteBytes(net, buf, 3); // Write 3 cmd bytes
+ // ReadBytes(net, buf+3, 10); // Read 6 data bytes, 2 0xFF, 2 CRC16
+ // if (!CheckCRC16(buf, 11, &buf[11])) {
+ // // Handle error.
+ // }
+ //
+ // @param input - Array of bytes to checksum.
+ // @param len - How many bytes to use.
+ // @param inverted_crc - The two CRC16 bytes in the received data.
+ // This should just point into the received data,
+ // *not* at a 16-bit integer.
+ // @param crc - The crc starting value (optional)
+ // @return True, iff the CRC matches.
+ static bool check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc = 0);
+
+ // Compute a Dallas Semiconductor 16 bit CRC. This is required to check
+ // the integrity of data received from many 1-Wire devices. Note that the
+ // CRC computed here is *not* what you'll get from the 1-Wire network,
+ // for two reasons:
+ // 1) The CRC is transmitted bitwise inverted.
+ // 2) Depending on the endian-ness of your processor, the binary
+ // representation of the two-byte return value may have a different
+ // byte order than the two bytes you get from 1-Wire.
+ // @param input - Array of bytes to checksum.
+ // @param len - How many bytes to use.
+ // @param crc - The crc starting value (optional)
+ // @return The CRC16, as defined by Dallas Semiconductor.
+ static uint16_t crc16(const uint8_t* input, uint16_t len, uint16_t crc = 0);
+#endif
+#endif
+};
+
+#endif
diff --git a/lib/OneWire/examples/DS18x20_Temperature/DS18x20_Temperature.pde b/lib/OneWire/examples/DS18x20_Temperature/DS18x20_Temperature.pde
new file mode 100644
index 0000000..68ca194
--- /dev/null
+++ b/lib/OneWire/examples/DS18x20_Temperature/DS18x20_Temperature.pde
@@ -0,0 +1,112 @@
+#include <OneWire.h>
+
+// OneWire DS18S20, DS18B20, DS1822 Temperature Example
+//
+// http://www.pjrc.com/teensy/td_libs_OneWire.html
+//
+// The DallasTemperature library can do all this work for you!
+// http://milesburton.com/Dallas_Temperature_Control_Library
+
+OneWire ds(10); // on pin 10 (a 4.7K resistor is necessary)
+
+void setup(void) {
+ Serial.begin(9600);
+}
+
+void loop(void) {
+ byte i;
+ byte present = 0;
+ byte type_s;
+ byte data[12];
+ byte addr[8];
+ float celsius, fahrenheit;
+
+ if ( !ds.search(addr)) {
+ Serial.println("No more addresses.");
+ Serial.println();
+ ds.reset_search();
+ delay(250);
+ return;
+ }
+
+ Serial.print("ROM =");
+ for( i = 0; i < 8; i++) {
+ Serial.write(' ');
+ Serial.print(addr[i], HEX);
+ }
+
+ if (OneWire::crc8(addr, 7) != addr[7]) {
+ Serial.println("CRC is not valid!");
+ return;
+ }
+ Serial.println();
+
+ // the first ROM byte indicates which chip
+ switch (addr[0]) {
+ case 0x10:
+ Serial.println(" Chip = DS18S20"); // or old DS1820
+ type_s = 1;
+ break;
+ case 0x28:
+ Serial.println(" Chip = DS18B20");
+ type_s = 0;
+ break;
+ case 0x22:
+ Serial.println(" Chip = DS1822");
+ type_s = 0;
+ break;
+ default:
+ Serial.println("Device is not a DS18x20 family device.");
+ return;
+ }
+
+ ds.reset();
+ ds.select(addr);
+ ds.write(0x44, 1); // start conversion, with parasite power on at the end
+
+ delay(1000); // maybe 750ms is enough, maybe not
+ // we might do a ds.depower() here, but the reset will take care of it.
+
+ present = ds.reset();
+ ds.select(addr);
+ ds.write(0xBE); // Read Scratchpad
+
+ Serial.print(" Data = ");
+ Serial.print(present, HEX);
+ Serial.print(" ");
+ for ( i = 0; i < 9; i++) { // we need 9 bytes
+ data[i] = ds.read();
+ Serial.print(data[i], HEX);
+ Serial.print(" ");
+ }
+ Serial.print(" CRC=");
+ Serial.print(OneWire::crc8(data, 8), HEX);
+ Serial.println();
+
+ // Convert the data to actual temperature
+ // because the result is a 16 bit signed integer, it should
+ // be stored to an "int16_t" type, which is always 16 bits
+ // even when compiled on a 32 bit processor.
+ int16_t raw = (data[1] << 8) | data[0];
+ if (type_s) {
+ raw = raw << 3; // 9 bit resolution default
+ if (data[7] == 0x10) {
+ // "count remain" gives full 12 bit resolution
+ raw = (raw & 0xFFF0) + 12 - data[6];
+ }
+ } else {
+ byte cfg = (data[4] & 0x60);
+ // at lower res, the low bits are undefined, so let's zero them
+ if (cfg == 0x00) raw = raw & ~7; // 9 bit resolution, 93.75 ms
+ else if (cfg == 0x20) raw = raw & ~3; // 10 bit res, 187.5 ms
+ else if (cfg == 0x40) raw = raw & ~1; // 11 bit res, 375 ms
+ //// default is 12 bit resolution, 750 ms conversion time
+ }
+ celsius = (float)raw / 16.0;
+ fahrenheit = celsius * 1.8 + 32.0;
+ Serial.print(" Temperature = ");
+ Serial.print(celsius);
+ Serial.print(" Celsius, ");
+ Serial.print(fahrenheit);
+ Serial.println(" Fahrenheit");
+}
diff --git a/lib/OneWire/examples/DS2408_Switch/DS2408_Switch.pde b/lib/OneWire/examples/DS2408_Switch/DS2408_Switch.pde
new file mode 100644
index 0000000..d171f9b
--- /dev/null
+++ b/lib/OneWire/examples/DS2408_Switch/DS2408_Switch.pde
@@ -0,0 +1,77 @@
+#include <OneWire.h>
+
+/*
+ * DS2408 8-Channel Addressable Switch
+ *
+ * Writte by Glenn Trewitt, glenn at trewitt dot org
+ *
+ * Some notes about the DS2408:
+ * - Unlike most input/output ports, the DS2408 doesn't have mode bits to
+ * set whether the pins are input or output. If you issue a read command,
+ * they're inputs. If you write to them, they're outputs.
+ * - For reading from a switch, you should use 10K pull-up resisters.
+ */
+
+void PrintBytes(uint8_t* addr, uint8_t count, bool newline=0) {
+ for (uint8_t i = 0; i < count; i++) {
+ Serial.print(addr[i]>>4, HEX);
+ Serial.print(addr[i]&0x0f, HEX);
+ }
+ if (newline)
+ Serial.println();
+}
+
+void ReadAndReport(OneWire* net, uint8_t* addr) {
+ Serial.print(" Reading DS2408 ");
+ PrintBytes(addr, 8);
+ Serial.println();
+
+ uint8_t buf[13]; // Put everything in the buffer so we can compute CRC easily.
+ buf[0] = 0xF0; // Read PIO Registers
+ buf[1] = 0x88; // LSB address
+ buf[2] = 0x00; // MSB address
+ net->write_bytes(buf, 3);
+ net->read_bytes(buf+3, 10); // 3 cmd bytes, 6 data bytes, 2 0xFF, 2 CRC16
+ net->reset();
+
+ if (!OneWire::check_crc16(buf, 11, &buf[11])) {
+ Serial.print("CRC failure in DS2408 at ");
+ PrintBytes(addr, 8, true);
+ return;
+ }
+ Serial.print(" DS2408 data = ");
+ // First 3 bytes contain command, register address.
+ Serial.println(buf[3], BIN);
+}
+
+OneWire net(10); // on pin 10
+
+void setup(void) {
+ Serial.begin(9600);
+}
+
+void loop(void) {
+ byte i;
+ byte present = 0;
+ byte addr[8];
+
+ if (!net.search(addr)) {
+ Serial.print("No more addresses.\n");
+ net.reset_search();
+ delay(1000);
+ return;
+ }
+
+ if (OneWire::crc8(addr, 7) != addr[7]) {
+ Serial.print("CRC is not valid!\n");
+ return;
+ }
+
+ if (addr[0] != 0x29) {
+ PrintBytes(addr, 8);
+ Serial.print(" is not a DS2408.\n");
+ return;
+ }
+
+ ReadAndReport(&net, addr);
+}
diff --git a/lib/OneWire/examples/DS250x_PROM/DS250x_PROM.pde b/lib/OneWire/examples/DS250x_PROM/DS250x_PROM.pde
new file mode 100644
index 0000000..baa51c8
--- /dev/null
+++ b/lib/OneWire/examples/DS250x_PROM/DS250x_PROM.pde
@@ -0,0 +1,90 @@
+/*
+DS250x add-only programmable memory reader w/SKIP ROM.
+
+ The DS250x is a 512/1024bit add-only PROM(you can add data but cannot change the old one) that's used mainly for device identification purposes
+ like serial number, mfgr data, unique identifiers, etc. It uses the Maxim 1-wire bus.
+
+ This sketch will use the SKIP ROM function that skips the 1-Wire search phase since we only have one device connected in the bus on digital pin 6.
+ If more than one device is connected to the bus, it will fail.
+ Sketch will not verify if device connected is from the DS250x family since the skip rom function effectively skips the family-id byte readout.
+ thus it is possible to run this sketch with any Maxim OneWire device in which case the command CRC will most likely fail.
+ Sketch will only read the first page of memory(32bits) starting from the lower address(0000h), if more than 1 device is present, then use the sketch with search functions.
+ Remember to put a 4.7K pullup resistor between pin 6 and +Vcc
+
+ To change the range or ammount of data to read, simply change the data array size, LSB/MSB addresses and for loop iterations
+
+ This example code is in the public domain and is provided AS-IS.
+
+ Built with Arduino 0022 and PJRC OneWire 2.0 library http://www.pjrc.com/teensy/td_libs_OneWire.html
+
+ created by Guillermo Lovato <glovato@gmail.com>
+ march/2011
+
+ */
+
+#include <OneWire.h>
+OneWire ds(6); // OneWire bus on digital pin 6
+void setup() {
+ Serial.begin (9600);
+}
+
+void loop() {
+ byte i; // This is for the for loops
+ boolean present; // device present var
+ byte data[32]; // container for the data from device
+ byte leemem[3] = { // array with the commands to initiate a read, DS250x devices expect 3 bytes to start a read: command,LSB&MSB adresses
+ 0xF0 , 0x00 , 0x00 }; // 0xF0 is the Read Data command, followed by 00h 00h as starting address(the beginning, 0000h)
+ byte ccrc; // Variable to store the command CRC
+ byte ccrc_calc;
+
+ present = ds.reset(); // OneWire bus reset, always needed to start operation on the bus, returns a 1/TRUE if there's a device present.
+ ds.skip(); // Skip ROM search
+
+ if (present == TRUE){ // We only try to read the data if there's a device present
+ Serial.println("DS250x device present");
+ ds.write(leemem[0],1); // Read data command, leave ghost power on
+ ds.write(leemem[1],1); // LSB starting address, leave ghost power on
+ ds.write(leemem[2],1); // MSB starting address, leave ghost power on
+
+ ccrc = ds.read(); // DS250x generates a CRC for the command we sent, we assign a read slot and store it's value
+ ccrc_calc = OneWire::crc8(leemem, 3); // We calculate the CRC of the commands we sent using the library function and store it
+
+ if ( ccrc_calc != ccrc) { // Then we compare it to the value the ds250x calculated, if it fails, we print debug messages and abort
+ Serial.println("Invalid command CRC!");
+ Serial.print("Calculated CRC:");
+ Serial.println(ccrc_calc,HEX); // HEX makes it easier to observe and compare
+ Serial.print("DS250x readback CRC:");
+ Serial.println(ccrc,HEX);
+ return; // Since CRC failed, we abort the rest of the loop and start over
+ }
+ Serial.println("Data is: "); // For the printout of the data
+ for ( i = 0; i < 32; i++) { // Now it's time to read the PROM data itself, each page is 32 bytes so we need 32 read commands
+ data[i] = ds.read(); // we store each read byte to a different position in the data array
+ Serial.print(data[i]); // printout in ASCII
+ Serial.print(" "); // blank space
+ }
+ Serial.println();
+ delay(5000); // Delay so we don't saturate the serial output
+ }
+ else { // Nothing is connected in the bus
+ Serial.println("Nothing connected");
+ delay(3000);
+ }
+}
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/lib/OneWire/keywords.txt b/lib/OneWire/keywords.txt
new file mode 100644
index 0000000..bee5d90
--- /dev/null
+++ b/lib/OneWire/keywords.txt
@@ -0,0 +1,38 @@
+#######################################
+# Syntax Coloring Map For OneWire
+#######################################
+
+#######################################
+# Datatypes (KEYWORD1)
+#######################################
+
+OneWire KEYWORD1
+
+#######################################
+# Methods and Functions (KEYWORD2)
+#######################################
+
+reset KEYWORD2
+write_bit KEYWORD2
+read_bit KEYWORD2
+write KEYWORD2
+write_bytes KEYWORD2
+read KEYWORD2
+read_bytes KEYWORD2
+select KEYWORD2
+skip KEYWORD2
+depower KEYWORD2
+reset_search KEYWORD2
+search KEYWORD2
+crc8 KEYWORD2
+crc16 KEYWORD2
+check_crc16 KEYWORD2
+
+#######################################
+# Instances (KEYWORD2)
+#######################################
+
+
+#######################################
+# Constants (LITERAL1)
+#######################################
diff --git a/lib/RTClib b/lib/RTClib
new file mode 160000
+Subproject 573581794b73dc70bccc659df9d54a9f599f426
diff --git a/lib/SD b/lib/SD
new file mode 160000
+Subproject 3216c04075860edece362818c9c413e9c061a18
diff --git a/src/Bounce.cpp b/src/Bounce.cpp
new file mode 100644
index 0000000..40709e4
--- /dev/null
+++ b/src/Bounce.cpp
@@ -0,0 +1,90 @@
+
+// Please read Bounce.h for information about the liscence and authors
+
+#include <Arduino.h>
+#include "Bounce.h"
+
+Bounce::Bounce() {
+}
+
+Bounce::Bounce(uint8_t pin,unsigned long interval_millis)
+{
+ interval(interval_millis);
+ previous_millis = millis();
+ state = digitalRead(pin);
+ this->pin = pin;
+}
+
+
+void Bounce::write(int new_state)
+ {
+ this->state = new_state;
+ digitalWrite(pin,state);
+ }
+
+
+void Bounce::interval(unsigned long interval_millis)
+{
+ this->interval_millis = interval_millis;
+ this->rebounce_millis = 0;
+}
+
+void Bounce::rebounce(unsigned long interval)
+{
+ this->rebounce_millis = interval;
+}
+
+
+
+int Bounce::update()
+{
+ if ( debounce() ) {
+ rebounce(0);
+ return stateChanged = 1;
+ }
+
+ // We need to rebounce, so simulate a state change
+
+ if ( rebounce_millis && (millis() - previous_millis >= rebounce_millis) ) {
+ previous_millis = millis();
+ rebounce(0);
+ return stateChanged = 1;
+ }
+
+ return stateChanged = 0;
+}
+
+
+unsigned long Bounce::duration()
+{
+ return millis() - previous_millis;
+}
+
+
+int Bounce::read()
+{
+ return (int)state;
+}
+
+
+// Protected: debounces the pin
+int Bounce::debounce() {
+
+ uint8_t newState = digitalRead(pin);
+ if (state != newState ) {
+ if (millis() - previous_millis >= interval_millis) {
+ previous_millis = millis();
+ state = newState;
+ return 1;
+ }
+ }
+
+ return 0;
+
+}
+
+// The risingEdge method is true for one scan after the de-bounced input goes from off-to-on.
+bool Bounce::risingEdge() { return stateChanged && state; }
+// The fallingEdge method it true for one scan after the de-bounced input goes from on-to-off.
+bool Bounce::fallingEdge() { return stateChanged && !state; }
+
diff --git a/src/Bounce.h b/src/Bounce.h
new file mode 100644
index 0000000..68cdbd8
--- /dev/null
+++ b/src/Bounce.h
@@ -0,0 +1,71 @@
+
+/*
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
+ * MA 02110-1301, USA.
+ */
+
+
+
+/* * * * * * * * * * * * * * * * * * * * * * * * * * * *
+ Main code by Thomas O Fredericks
+ Rebounce and duration functions contributed by Eric Lowry
+ Write function contributed by Jim Schimpf
+ risingEdge and fallingEdge contributed by Tom Harkaway
+* * * * * * * * * * * * * * * * * * * * * * * * * * * * */
+
+#ifndef Bounce_h
+#define Bounce_h
+
+#include <inttypes.h>
+
+class Bounce
+{
+
+public:
+ // Initialize
+ Bounce();
+ Bounce(uint8_t pin, unsigned long interval_millis );
+ // Sets the debounce interval
+ void interval(unsigned long interval_millis);
+ // Updates the pin
+ // Returns 1 if the state changed
+ // Returns 0 if the state did not change
+ int update();
+ // Forces the pin to signal a change (through update()) in X milliseconds
+ // even if the state does not actually change
+ // Example: press and hold a button and have it repeat every X milliseconds
+ void rebounce(unsigned long interval);
+ // Returns the updated pin state
+ int read();
+ // Sets the stored pin state
+ void write(int new_state);
+ // Returns the number of milliseconds the pin has been in the current state
+ unsigned long duration();
+ // The risingEdge method is true for one scan after the de-bounced input goes from off-to-on.
+ bool risingEdge();
+ // The fallingEdge method it true for one scan after the de-bounced input goes from on-to-off.
+ bool fallingEdge();
+
+protected:
+ int debounce();
+ unsigned long previous_millis, interval_millis, rebounce_millis;
+ uint8_t state;
+ uint8_t pin;
+ uint8_t stateChanged;
+};
+
+#endif
+
+
diff --git a/src/main.cpp b/src/main.cpp
new file mode 100644
index 0000000..8058f46
--- /dev/null
+++ b/src/main.cpp
@@ -0,0 +1,347 @@
+// simple data logger
+//
+// using Arduino Leonardo and an Adafruit Logger Shield
+//
+// uses Adafruit's RTClib
+//
+// Based on https://github.com/cnvogelg/ardu/blob/master/datalog/datalog/datalog.ino
+
+#include <Arduino.h>
+#include <Wire.h>
+#include <SD.h>
+#include <RTClib.h>
+#include <DallasTemperature.h>
+#include <stdlib.h>
+
+#include "Bounce.h"
+
+// Pin setup
+const int ledGreenPin = 8;
+const int ledRedPin = 4;
+const int buttonPin = 6;
+const int oneWirePin = 7;
+const int chipSelect = 10;
+
+#define DEBOUNCE 10
+#define BUFSIZE 32
+
+// ----- GLOBALS -----
+RTC_DS1307 RTC;
+OneWire oneWire(oneWirePin);
+DallasTemperature sensors(&oneWire);
+
+uint16_t delta = 10; // measurement delta in seconds
+uint32_t next_ts;
+
+static uint16_t year;
+static uint8_t month, day, hour, minute, second;
+
+Bounce logToggleButton;
+
+File file;
+
+// offsets: 0123456789012
+byte name[] = "yymmdd_x.log";
+
+// ----- FUNCTIONS -----
+static void led(int pin, int on)
+{
+ digitalWrite(pin, on ? HIGH : LOW);
+}
+
+// fatal error - blink led and wait for reset
+static void fail() {
+ while(1) {
+ led(ledRedPin, 1);
+ delay(200);
+ led(ledRedPin, 0);
+ delay(200);
+ }
+}
+
+static int sd_init()
+{
+ pinMode(chipSelect, OUTPUT);
+ //if (!SD.begin(chipSelect)) {
+ if (!SD.begin(10,11,12,13)) {
+ Serial.println("SD init failed");
+ fail();
+ }
+}
+
+static void rtc_init()
+{
+ Wire.begin();
+ RTC.begin();
+
+ if (! RTC.isrunning()) {
+ Serial.println("RTC is NOT running!");
+ }
+
+ // get value for first measurement
+ next_ts = RTC.now().unixtime();
+}
+
+static uint16_t parse_dec(byte *buf, byte num)
+{
+ uint16_t val = 0;
+ for(byte i=0;i<num;i++) {
+ val = val * 10;
+ if ((buf[i] >= '0')&&(buf[i] <= '9')) {
+ byte v = buf[i] - '0';
+ val += v;
+ } else {
+ return 0xffff;
+ }
+ }
+ return val;
+}
+
+static void to_dec(uint16_t val, byte *buf, byte num)
+{
+ byte *ptr = buf + num - 1;
+ for(byte i=0;i<num;i++) {
+ byte r = val % 10;
+ val = val / 10;
+ *(ptr--) = '0' + r;
+ }
+}
+
+static void store_name()
+{
+ DateTime now = RTC.now();
+ to_dec(now.year(),name,2);
+ to_dec(now.month(),name+2,2);
+ to_dec(now.day(),name+4,2);
+}
+
+static byte log_find_name()
+{
+ store_name();
+ for(int i=0;i<26;i++) {
+ name[7] = 'a' + i;
+ if (!SD.exists((char *)name)) {
+ return 1;
+ }
+ }
+ return 0;
+}
+
+static byte log_open()
+{
+ // log already open!
+ if (file) {
+ return 1;
+ }
+ // try to find name
+ if (!log_find_name()) {
+ return 2;
+ }
+ file = SD.open((char *)name, FILE_WRITE);
+ if (!file) {
+ return 3;
+ }
+
+ Serial.print("O: ");
+ Serial.println((char *)name);
+ return 0;
+}
+
+static byte log_close()
+{
+ // log is not open!
+ if (!file) {
+ return 1;
+ }
+ file.close();
+
+ Serial.print("C: ");
+ Serial.println((char *)name);
+ return 0;
+}
+
+static void store_byte_val(byte v, byte cmd)
+{
+ switch (cmd) {
+ case 'm': month = v; break;
+ case 'd': day = v; break;
+ case 'H': hour = v; break;
+ case 'M': minute = v; break;
+ case 'S': second = v; break;
+ }
+}
+
+static void store_word_val(uint16_t v, byte cmd)
+{
+ switch (cmd) {
+ case 'y': year = v; break;
+ case 'D': delta = v; break;
+ }
+}
+
+static void adjust_clock()
+{
+ DateTime set(year,month,day,hour,minute,second);
+ RTC.adjust(set);
+
+ // check new time
+ uint32_t ts = RTC.now().unixtime();
+
+ // update next time
+ next_ts = ts + delta;
+}
+
+static void print_time()
+{
+ DateTime now = RTC.now();
+ Serial.print(now.year(), DEC);
+ Serial.print('/');
+ Serial.print(now.month(), DEC);
+ Serial.print('/');
+ Serial.print(now.day(), DEC);
+ Serial.print(' ');
+ Serial.print(now.hour(), DEC);
+ Serial.print(':');
+ Serial.print(now.minute(), DEC);
+ Serial.print(':');
+ Serial.print(now.second(), DEC);
+ Serial.println();
+}
+
+const byte ERR_CMD = 9;
+const byte ERR_SYNTAX = 8;
+const byte OK = 0;
+
+static byte handle_command(char *buf, int len)
+{
+ uint16_t v;
+ switch (buf[0]) {
+ case 'y': // set year
+ case 'D': // set delta
+ if (len==5) {
+ v = parse_dec((byte*) buf+1,4);
+ if (v==0xffff) {
+ return ERR_SYNTAX;
+ }
+ Serial.write(buf[0]);
+ Serial.println(v);
+ store_word_val(v,buf[0]);
+ } else {
+ return ERR_SYNTAX;
+ }
+ break;
+ case 'm': // set month
+ case 'd': // set day
+ case 'H': // set HOUR
+ case 'M': // set MINUTE
+ case 'S': // set SECOND
+ if (len==3) {
+ v = parse_dec((byte*) buf+1,2);
+ if (v==0xffff) {
+ return ERR_SYNTAX;
+ }
+ Serial.write(buf[0]);
+ Serial.println(v);
+ store_byte_val((byte)v,buf[0]);
+ } else {
+ return ERR_SYNTAX;
+ }
+ break;
+ case 'a': // adjust clock
+ adjust_clock();
+ break;
+ case 'o': // open log
+ return log_open();
+ case 'c': // close log
+ return log_close();
+ case 'r': // read clock
+ print_time();
+ break;
+ default:
+ return ERR_CMD;
+ }
+ return OK;
+}
+
+static void serial_in()
+{
+ // read serial
+ if (Serial.available()) {
+ char buf[BUFSIZE];
+ int len = Serial.readBytesUntil('\n', buf, sizeof(buf));
+ byte err = handle_command(buf, len);
+ if (err == 0) {
+ Serial.println("OK");
+ } else {
+ Serial.print("ERR");
+ Serial.print(err);
+ Serial.println();
+ }
+ }
+}
+
+static void handle_button(void)
+{
+ if (file) {
+ log_close();
+ } else {
+ log_open();
+ }
+}
+
+// ----- MAIN -----
+void setup () {
+ Serial.begin(9600);
+
+ //while (!Serial) {
+ //; // wait for serial port to connect. Needed for Leonardo only
+ //}
+
+ Serial.println("Starting up");
+
+ pinMode(buttonPin, INPUT_PULLUP);
+ logToggleButton = Bounce(buttonPin, DEBOUNCE);
+
+ pinMode(ledRedPin, OUTPUT);
+ pinMode(ledGreenPin, OUTPUT);
+
+ rtc_init();
+ sd_init();
+}
+
+void loop () {
+ led(ledRedPin, file ? 1 : 0);
+
+ serial_in();
+
+ logToggleButton.update();
+ if (logToggleButton.fallingEdge()) {
+ handle_button();
+ }
+
+ uint32_t ts = RTC.now().unixtime();
+
+ if (ts >= next_ts) {
+ led(ledGreenPin, 1);
+ next_ts += delta;
+ // do measurement
+ sensors.requestTemperatures();
+ float t = sensors.getTempCByIndex(0);
+ char temp[BUFSIZE];
+
+ // format: <timestamp> t:1=<temp>
+ String line = "";
+ line += ts;
+
+ line += " t:1=";
+ dtostrf(t, 5, 2, temp);
+ line += temp;
+
+ Serial.println(line);
+ if (file) {
+ file.println(line);
+ file.flush();
+ }
+ led(ledGreenPin, 0);
+ }
+}