# -*- Mode: perl; indent-tabs-mode: nil -*- # # The contents of this file are subject to the Mozilla Public # License Version 1.1 (the "License"); you may not use this file # except in compliance with the License. You may obtain a copy of # the License at http://www.mozilla.org/MPL/ # # Software distributed under the License is distributed on an "AS # IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or # implied. See the License for the specific language governing # rights and limitations under the License. # # The Original Code is the Bugzilla Bug Tracking System. # # The Initial Developer of the Original Code is Everything Solved. # Portions created by Everything Solved are Copyright (C) 2006 # Everything Solved. All Rights Reserved. # # Contributor(s): Max Kanat-Alexander package Bugzilla::Install::Util; # The difference between this module and Bugzilla::Util is that this # module may require *only* Bugzilla::Constants and built-in # perl modules. use strict; use Bugzilla::Constants; use File::Basename; use POSIX (); use Safe; use base qw(Exporter); our @EXPORT_OK = qw( get_version_and_os indicate_progress install_string template_include_path vers_cmp ); sub get_version_and_os { # Display version information my @os_details = POSIX::uname; # 0 is the name of the OS, 2 is the major version, my $os_name = $os_details[0] . ' ' . $os_details[2]; if (ON_WINDOWS) { require Win32; $os_name = Win32::GetOSName(); } # $os_details[3] is the minor version. return { bz_ver => BUGZILLA_VERSION, perl_ver => sprintf('%vd', $^V), os_name => $os_name, os_ver => $os_details[3] }; } sub indicate_progress { my ($params) = @_; my $current = $params->{current}; my $total = $params->{total}; my $every = $params->{every} || 1; print "." if !($current % $every); if ($current % ($every * 60) == 0) { print "$current/$total (" . int($current * 100 / $total) . "%)\n"; } } sub install_string { my ($string_id, $vars) = @_; _cache()->{template_include_path} ||= template_include_path(); my $path = _cache()->{template_include_path}; my $string_template; # Find the first template that defines this string. foreach my $dir (@$path) { my $base = "$dir/setup/strings"; $string_template = _get_string_from_file($string_id, "$base.txt.pl") if !defined $string_template; last if defined $string_template; } die "No language defines the string '$string_id'" if !defined $string_template; $vars ||= {}; my @replace_keys = keys %$vars; foreach my $key (@replace_keys) { my $replacement = $vars->{$key}; die "'$key' in '$string_id' is tainted: '$replacement'" if is_tainted($replacement); # We don't want people to start getting clever and inserting # ##variable## into their values. So we check if any other # key is listed in the *replacement* string, before doing # the replacement. This is mostly to protect programmers from # making mistakes. if (grep($replacement =~ /##$key##/, @replace_keys)) { die "Unsafe replacement for '$key' in '$string_id': '$replacement'"; } $string_template =~ s/\Q##$key##\E/$replacement/g; } return $string_template; } sub template_include_path { my ($params) = @_; $params ||= {}; # Basically, the way this works is that we have a list of languages # that we *want*, and a list of languages that Bugzilla actually # supports. The caller tells us what languages they want, by setting # $ENV{HTTP_ACCEPT_LANGUAGE} or $params->{only_language}. The languages # we support are those specified in $params->{use_languages}. Otherwise # we support every language installed in the template/ directory. my @wanted; if ($params->{only_language}) { @wanted = ($params->{only_language}); } else { @wanted = _sort_accept_language($ENV{'HTTP_ACCEPT_LANGUAGE'} || ''); } my @supported; if (defined $params->{use_languages}) { @supported = @{$params->{use_languages}}; } else { my @dirs = glob(bz_locations()->{'templatedir'} . "/*"); @dirs = map(basename($_), @dirs); @supported = grep($_ ne 'CVS', @dirs); } my @usedlanguages; foreach my $wanted (@wanted) { # If we support the language we want, or *any version* of # the language we want, it gets pushed into @usedlanguages. # # Per RFC 1766 and RFC 2616, things like 'en' match 'en-us' and # 'en-uk', but not the other way around. (This is unfortunately # not very clearly stated in those RFC; see comment just over 14.5 # in http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.4) if(my @found = grep /^\Q$wanted\E(-.+)?$/i, @supported) { push (@usedlanguages, @found); } } # If we didn't want *any* of the languages we support, just use all # of the languages we said we support, in the order they were specified. # This is only done when you ask for a certain set of languages, because # otherwise @supported just came off the disk in alphabetical order, # and it could give you de (German) when you speak English. # (If @supported came off the disk, we fall back on English if no language # is available--that happens below.) if (!@usedlanguages && $params->{use_languages}) { @usedlanguages = @supported; } # We always include English at the bottom if it's not there, even if # somebody removed it from use_languages. if (!grep($_ eq 'en', @usedlanguages)) { push(@usedlanguages, 'en'); } # Now, we add template directories in the order they will be searched: # First, we add extension template directories, because extension templates # override standard templates. Extensions may be localized in the same way # that Bugzilla templates are localized. my @include_path; my @extensions = glob(bz_locations()->{'extensionsdir'} . "/*"); foreach my $extension (@extensions) { foreach my $lang (@usedlanguages) { _add_language_set(\@include_path, $lang, "$extension/template"); } } # Then, we add normal template directories, sorted by language. foreach my $lang (@usedlanguages) { _add_language_set(\@include_path, $lang); } return \@include_path; } # This is taken straight from Sort::Versions 1.5, which is not included # with perl by default. sub vers_cmp { my ($a, $b) = @_; # Remove leading zeroes - Bug 344661 $a =~ s/^0*(\d.+)/$1/; $b =~ s/^0*(\d.+)/$1/; my @A = ($a =~ /([-.]|\d+|[^-.\d]+)/g); my @B = ($b =~ /([-.]|\d+|[^-.\d]+)/g); my ($A, $B); while (@A and @B) { $A = shift @A; $B = shift @B; if ($A eq '-' and $B eq '-') { next; } elsif ( $A eq '-' ) { return -1; } elsif ( $B eq '-') { return 1; } elsif ($A eq '.' and $B eq '.') { next; } elsif ( $A eq '.' ) { return -1; } elsif ( $B eq '.' ) { return 1; } elsif ($A =~ /^\d+$/ and $B =~ /^\d+$/) { if ($A =~ /^0/ || $B =~ /^0/) { return $A cmp $B if $A cmp $B; } else { return $A <=> $B if $A <=> $B; } } else { $A = uc $A; $B = uc $B; return $A cmp $B if $A cmp $B; } } @A <=> @B; } ###################### # Helper Subroutines # ###################### # Used by install_string sub _get_string_from_file { my ($string_id, $file) = @_; return undef if !-e $file; my $safe = new Safe; $safe->rdo($file); my %strings = %{$safe->varglob('strings')}; return $strings{$string_id}; } # Used by template_include_path. sub _add_language_set { my ($array, $lang, $templatedir) = @_; $templatedir ||= bz_locations()->{'templatedir'}; my @add = ("$templatedir/$lang/custom", "$templatedir/$lang/default"); my $project = bz_locations->{'project'}; push(@add, "$templatedir/$lang/$project") if $project; foreach my $dir (@add) { #if (-d $dir) { trick_taint($dir); push(@$array, $dir); #} } } # Make an ordered list out of a HTTP Accept-Language header (see RFC 2616, 14.4) # We ignore '*' and ;q=0 # For languages with the same priority q the order remains unchanged. sub _sort_accept_language { sub sortQvalue { $b->{'qvalue'} <=> $a->{'qvalue'} } my $accept_language = $_[0]; # clean up string. $accept_language =~ s/[^A-Za-z;q=0-9\.\-,]//g; my @qlanguages; my @languages; foreach(split /,/, $accept_language) { if (m/([A-Za-z\-]+)(?:;q=(\d(?:\.\d+)))?/) { my $lang = $1; my $qvalue = $2; $qvalue = 1 if not defined $qvalue; next if $qvalue == 0; $qvalue = 1 if $qvalue > 1; push(@qlanguages, {'qvalue' => $qvalue, 'language' => $lang}); } } return map($_->{'language'}, (sort sortQvalue @qlanguages)); } # This is like request_cache, but it's used only by installation code # for setup.cgi and things like that. our $_cache = {}; sub _cache { if ($ENV{MOD_PERL}) { require Apache2::RequestUtil; return Apache2::RequestUtil->request->pnotes(); } return $_cache; } ############################### # Copied from Bugzilla::Util # ############################## sub trick_taint { require Carp; Carp::confess("Undef to trick_taint") unless defined $_[0]; my $match = $_[0] =~ /^(.*)$/s; $_[0] = $match ? $1 : undef; return (defined($_[0])); } sub is_tainted { return not eval { my $foo = join('',@_), kill 0; 1; }; } __END__ =head1 NAME Bugzilla::Install::Util - Utility functions that are useful both during installation and afterwards. =head1 DESCRIPTION This module contains various subroutines that are used primarily during installation. However, these subroutines can also be useful to non-installation code, so they have been split out into this module. The difference between this module and L is that this module is safe to C anywhere in Bugzilla, even during installation, because it depends only on L and built-in perl modules. None of the subroutines are exported by default--you must explicitly export them. =head1 SUBROUTINES =over =item C Returns a hash containing information about what version of Bugzilla we're running, what perl version we're using, and what OS we're running on. =item C =over =item B This prints out lines of dots as a long update is going on, to let the user know where we are and that we're not frozen. A new line of dots will start every 60 dots. Sample usage: C $total, current =E $count, every =E 1 })> =item B Here's some sample output with C and C: ............................................................600/1000 (60%) ........................................ =item B =over =item C - The total number of items we're processing. =item C - The number of the current item we're processing. =item C - How often the function should print out a dot. For example, if this is 10, the function will print out a dot every ten items. Defaults to 1 if not specified. =back =item B: nothing =back =item C =over =item B This is a very simple method of templating strings for installation. It should only be used by code that has to run before the Template Toolkit can be used. (See the comments at the top of the various L modules to find out when it's safe to use Template Toolkit.) It pulls strings out of the F "template" and replaces any variable surrounded by double-hashes (##) with a value you specify. This allows for localization of strings used during installation. =item B Let's say your template string looks like this: The ##animal## jumped over the ##plant##. Let's say that string is called 'animal_jump_plant'. So you call the function like this: install_string('animal_jump_plant', { animal => 'fox', plant => 'tree' }); That will output this: The fox jumped over the tree. =item B =over =item C<$string_id> - The name of the string from F. =item C<$vars> - A hashref containing the replacement values for variables inside of the string. =back =item B: The appropriate string, with variables replaced. =back =item C Used by L and L to determine the directories where templates are installed. Templates can be installed in many places. They're listed here in the basic order that they're searched: =over =item extensions/C<$extension>/template/C<$language>/C<$project> =item extensions/C<$extension>/template/C<$language>/custom =item extensions/C<$extension>/template/C<$language>/default =item template/C<$language>/C<$project> =item template/C<$language>/custom =item template/C<$language>/default =back C<$project> has to do with installations that are using the C<$ENV{PROJECT}> variable to have different "views" on a single Bugzilla. The F directory includes templates shipped with Bugzilla. The F directory is a directory for local installations to override the F templates. Any individual template in F will override a template of the same name and path in F. C<$language> is a language code, C being the default language shipped with Bugzilla. Localizers ship other languages. C<$extension> is the name of any directory in the F directory. Each extension has its own directory. Note that languages are sorted by the user's preference (as specified in their browser, usually), and extensions are sorted alphabetically. =item C =over =item B This is a comparison function, like you would use in C, except that it compares two version numbers. So, for example, 2.10 would be greater than 2.2. It's based on versioncmp from L, with some Bugzilla-specific fixes. =item B: C<$a> and C<$b> - The versions you want to compare. =item B C<-1> if C<$a> is less than C<$b>, C<0> if they are equal, or C<1> if C<$a> is greater than C<$b>. =back =back