summaryrefslogtreecommitdiffstats
path: root/ch04-unitaere-raeume.tex
diff options
context:
space:
mode:
Diffstat (limited to 'ch04-unitaere-raeume.tex')
-rw-r--r--ch04-unitaere-raeume.tex4
1 files changed, 2 insertions, 2 deletions
diff --git a/ch04-unitaere-raeume.tex b/ch04-unitaere-raeume.tex
index 85d17a9..9087b28 100644
--- a/ch04-unitaere-raeume.tex
+++ b/ch04-unitaere-raeume.tex
@@ -167,7 +167,7 @@ Wir schreiben für $P$ auch $\Proj_Y : X → X$ mit Wertebereich $\im P = Y$ und
\begin{proof}
„⊂“ wurde bereits in Definition 2.1 gezeigt.
- „$\supset$“: Falls $(M^\perp)\perp \ne \cl M$, dann existiert $x_0 ∈ (M^\perp)^\perp \setminus \cl M$.
+ „$\supset$“: Falls $(M^\perp)^\perp \ne \cl M$, dann existiert $x_0 ∈ (M^\perp)^\perp \setminus \cl M$.
Da $X$ ein Hilbertraum ist, ist $\cl M$ vollständig.
Nach dem Satz vom orthogonalen Komplement gibt es eine eindeutige orthogonale Zerlegung von $x_0 = \hat x_0 + h_0^\perp$ mit $\hat x_0 = \Proj_M(x_0) ∈ \cl M$ und $x_0^\perp ∈ (\cl M)^\perp$.
Da $x_0^\perp ∈ (\cl M)^\perp$, ist auch $x_0^\perp ∈ (M)^\perp$ und $x_0 ∈ (M^\perp)^\perp$, also insbesondere $\langle x_0, x_0^\perp \rangle = 0$.
@@ -186,7 +186,7 @@ Wir schreiben für $P$ auch $\Proj_Y : X → X$ mit Wertebereich $\im P = Y$ und
Die Abbildung $P$ ist beschränkt mit Operatornorm $\norm P = \sup\limits_{x \ne 0} \frac{\norm{P(x)}}{\norm x} \le 1$,
denn für jedes $x = y + v$ mit $y ∈ Y, v ∈ Y^\perp$ gilt
\[
- \norm{P(x)}^2 = \norm{y^2} \le \norm y^2 + 2 \Re \langle y, v \rangle + \norm{v}^2 = \norm{y +v}^2 = \norm{x}^2.
+ \snorm{P(x)}^2 = \snorm{y^2} \le \snorm y^2 + 2 \Re \langle y, v \rangle + \norm{v}^2 = \snorm{y +v}^2 = \norm{x}^2.
\]
Desweiteren ist $P$ symmetrisch, das heißt für alle $x_1, x_2 ∈ X $ ist
\[