From 47534da23fc513a3afcdf6504c8b19d41b64f04e Mon Sep 17 00:00:00 2001 From: Ulli Kehrle Date: Wed, 27 Dec 2017 19:54:57 +0100 Subject: Ein paar Tippfehler korrigiert. --- ch06-schwache-topologien.tex | 9 ++------- 1 file changed, 2 insertions(+), 7 deletions(-) (limited to 'ch06-schwache-topologien.tex') diff --git a/ch06-schwache-topologien.tex b/ch06-schwache-topologien.tex index 3dda5e9..4f04bb6 100644 --- a/ch06-schwache-topologien.tex +++ b/ch06-schwache-topologien.tex @@ -1,8 +1,6 @@ \chapter{Schwache Topologien} In diesem Kapitel sei $X$ grundsätzlich ein normierter linearer Raum. - Wir wissen bereits, dass $\cl{B_1(0)}$ genau dann kompakt ist, wenn $\dim X < ∞$ ist. - Wir suchen nun eine sinnvolle Topologie für $X$, die von der Normtopologie noch möglichst viele Eigenschaften mitnimmt, aber die Einheitskugel kompakt macht. @@ -243,10 +241,7 @@ Für den Konvergenzbegriff gilt analog zu Satz 1.6 Wir konstruieren ein $x' ∈ \cl{B_1(0)}$ mit $x'_k \xrightharpoonup[k→∞]{*}$ (für eine Teilfolge). Für $n ∈ ℕ$ ist $(\lAngle x_k', x_n \rAngle)_{k ∈ ℕ}$ eine beschräkte Folge in $\K$, denn $|\lAngle x'_k, x_n \rAngle | \le \norm{x_n} \cdot 1 \; (*)$. - Durch das Diagonalverfahren finden wir eine Teilfolge $(x_{k_m})_{m ∈ ℕ}$, so dass für alle $n ∈ ℕ$ gilt - \[ - \lim_{m → ∞} \lAngle x'_{k_m},x_n \rAngle \;\;\text{existiert}: - \] + Durch das Diagonalverfahren finden wir eine Teilfolge $(x_{k_m})_{m ∈ ℕ}$, so dass für alle $n ∈ ℕ$ $\lim_{m → ∞} \lAngle x'_{k_m},x_n \rAngle$ existiert: Dazu gibt es wegen (*) zu $x_1$ eine Teilfolge $(x_{k,1}')_{k ∈ ℕ} ⊂ (x'_k)_{k ∈ ℕ}$ mit \[ (\lAngle x'_{k,1}, x_1 \rAngle)_{k ∈ ℕ} \;\;\text{konvergiert in } \K. @@ -298,7 +293,7 @@ Für den Konvergenzbegriff gilt analog zu Satz 1.6 Dann \[ | \lAngle x' - x'_k, x \rAngle | - ≤ | \lAngle x' - x'_k, x-y \lAngle| + |\lAngle x'-x'_k, y \rAngle| + ≤ | \lAngle x' - x'_k, x-y \rAngle| + |\lAngle x'-x'_k, y \rAngle| ≤ 2 \norm{x-y} + ε < 3 ε. \] Also ist schwache Konvergenz gezeigt und die Behauptung folgt. -- cgit v1.2.3-24-g4f1b