\section*{Motivation} \markboth{}{Motivation} In der klassischen Analyis haben wir Funktionen im $\K^n$, wobei $\K$ entweder $ℝ$ oder $ℂ$ ist, untersucht. Dabei war das Betrachten von Eigenschaften wie Konvergenz, Stetigkeit und Differenzierbarkeit sehr nützlich. Die Funktionalanalysis beschäftigt sich nun mit vergleichbaren Problemen in üblicherweise unendlich-dimensionalen Funktionenräumen. Hierfür werden wir versuchen, die aus der klassischen Analysis bekannten Untersuchungsmethoden zu verallgemeinern. Doch zunächst ein paar Probleme, für deren Lösung man die Funktionalanalysis benötigt. \begin{problem-nn} Ein klassisches Beispiel aus der Variationsrechnung: Wir wollen die Funktion \[ f(u) = \int_0^π |u'(x)|^2 dx \] unter den Nebenbedingungungen $u(0) = u(π) = 0$ und $\int_0^π |u(x)|^2 dx = 1$ minimieren. In der klassischen Analysis haben wir für Minimierungsprobleme mit Nebenbedingungungen Lagrange-Multiplikatoren genutzt. Im unendlich-dimensionalen Fall ist das jedoch nicht so einfach. Wir betrachten $f : Y → ℝ$ wie oben, wobei $Y$ eine Teilmenge des unendlich-dimensionalen Funktionenraums \[ X = \left\{ u ∈ C^1[0,π]: u(0) = u(π) = 0 \right\} \] ist, die durch \[ Y = \left\{ u ∈ X: \int_0^π |u(x)|^2 dx = 1 \right\} \] gegeben ist. Zwar ist $Y$ (in der $\L^2([0,π])$-Metrik) beschränkt und abgeschlossen, jedoch nicht kompakt. \end{problem-nn} \begin{problem-nn}[Fourierreihenentwicklung] Sei $\mathcal T = \{ 1, \cos t, \sin t, \cos (2t), \sin (2t), … \} = \{\phi_i\}_{i ∈ ℕ}$. Dann ist bekanntlich \[ \langle \phi_i, \phi_j \rangle = ∫_0^{2π} φ_i(t) φ_j(t) dt = 2π δ_{i,j}, \] wobei $δ_{i,j}$ das Kronecker-Delta bezeichne. Also lässt sich durch Normierung ein Orthonormalsystem aus $\mathcal T$ gewinnen. Jetzt fragen wir uns, ob sich jede $2π$-periodische Funktion $u$ bezüglich eines geeigneten Konvergenzbegriffs in eine Reihe $u = \sum_{i ∈ ℕ} α_i φ_i$ mit $α_i ∈ ℝ$ entwickeln können. Bereits bekannt ist, dass das für das entsprechende endlich-dimensionale Problem geht: Sei $T = \{ e_1,…,e_n\}$ die kanonische Standardbasis des $ℝ^n$ Dann gilt bekanntlich \[ \langle e_i, e_j \rangle_{ℝ^n} = δ_{i,j} \] und für jedes $x ∈ ℝ^n$ ist \[ x = \sum_{i=1}^n α_i e_i, \quad α_i = \langle x, e_i \rangle_{ℝ^n}. \] Wir fragen uns nach den Zusammenhängen zwischen den Problemen im endlich- und unendlich-dimensionalen. \end{problem-nn} \begin{problem-nn} Das Biegemoment eines Trägers kann man als Randwertaufgabe (gesucht ist $u: [0,1] → ℝ$, gegeben sind $p,r: [0,1] → ℝ$) \[ u''(t) + p(t) u(t) = r(t), \quad u(0) = u(1) = 0 \] bestimmen. Mit Hilfte der sogenannten Green'schen Funktion lässt sich diese Randwertaufgabe in eine Integralgleichung \[ (T_u)(t) := ∫_0^1 G(t,s) \big(r(s)-p(s)u(s)\big) ds = u \] umwandeln. Das heißt, man sucht einen Fixpunkt eines Integraloperators $T$ in einer geeigneten Menge von Funktionen. \end{problem-nn} Diese Probleme lassen sich mit der klassischen Analysis nicht mehr behandeln. In der Funktionalanalysis behandeln wir nun im Wesentlichen „Analysis in $\infty$-dimensionalen Räumen“ (meist Funktionenräume). Das heißt, wir wollen jetzt anstelle des $\K^n$ allgemeinere Räume betrachten, die jodoch immer noch folgende beide Charakteristika aufweisen: \begin{enumerate} \item Die lineare Struktur (das heißt, Elemente lassen sich addieren und mit einem Skalar multiplizieren) \item Die topologische Struktur (also insbesondere ein Konvergenzbegriff) \end{enumerate} Unser Ziel ist es zunächst, die beiden Strukturen zu erarbeiten. \chapter{Die lineare Struktur} \section{Der lineare Raum} Sei im folgenden stets $\K = ℝ$ oder $\K = ℂ$. Zunächst die \begin{definition}[Vektorraum] Sei $\K$ ein Körper. Eine Abelsche Gruppe $(X,+)$ zusammen mit einer Abbildung \[ \cdot : \K × X → X \] heißt $\K$-Vektorraum, falls für alle $α, β ∈ \K$ und $x, y ∈ X$ gilt: \begin{enumerate}[label=(V\arabic*)] \item $α x+y) = αx + βy$ \item $(α+β)x = αx + βx$ \item $(αβ)x = α(βx)$ \item $1 \cdot x = x$ \end{enumerate} \end{definition} \begin{bemerkung-nn} Je nachdem, ob $\K = ℂ$ oder $\K = ℝ$ gilt, heißt $X$ ein \emph{komplexer} oder ein \emph{reeller} Vektorraum. \end{bemerkung-nn} \begin{bemerkung-nn} Eine nichtleere Teilmenge $Y ⊂ X$ ist bereits dann ein linearer Raum, falls aus $α, β ∈ \K$, $x, y ∈ Y$ bereits $αx + βy ∈ Y$ folgt, also $Y$ abgeschlossen unter den Vektorraumoperationen ist. $Y$ heißt dann \emph{linearer Teilraum} oder auch \emph{linearer Unterraum}. \end{bemerkung-nn} \begin{bemerkung-nn} Zu jeder Teilmenge $M ⊂ X$ bildet die Menge aller Linearkombinationen von je endlich vieler Elemente einen linearen Teilraum von $X$. Dieser heißt die \emph{lineare Hülle} von $M$ oder der \emph{Aufspann} von $M$ \[ \lspan M = \left\{ x ∈ X: ∃ l ∈ ℕ, α_1,…,α_l ∈ \K, m_1,…,m_l ∈ M \text{ mit } \sum_{i=1}^l α_i m_i = x \right\}. \] \end{bemerkung-nn} \begin{bemerkung-nn} $M = \{x_λ\}_{λ ∈ Λ} ⊂ X$ heißt \emph{Basis} oder \emph{Hamel-Basis} von $X$, falls $M$ \emph{linear unabhängig}, das heißt, $0 ∈ X$ lässt sich nur auf triviale Art und Weise als Linearkombination endlich vieler der $x_λ$ schreiben, und $\lspan M = X$ ist. \end{bemerkung-nn} \begin{bemerkung-nn} Besitzt $X$ eine Basis von $n < ∞$ Elementen, dann heißt $n$ die \emph{Dimension} von $X$ und wir schreiben $\dim X = n$. Andernfalls heißt $X$ \emph{unendlich-dimensional} ($\dim X = ∞$). \end{bemerkung-nn} \begin{bemerkung-nn} Seien $X_1, X_2 ⊂ X$ lineare Teilräume. Dann ist \[ X_1 + X_2 := \left\{ αx_1 + βx_2: α, β ∈ \K, x_1 ∈ X_1, x_2 ∈ X_2 \right\} \] ebenfalls ein linearer Teilraum. Falls $X_1 ∩ X_2 = \{ 0\}$, schreiben wir $X_1 \oplus X_2$ und nennen die Summe \emph{direkt}. \end{bemerkung-nn} \begin{bemerkung-nn} Sei $Y$ ein linearer Teilraum von $X$. Definiere die Äquivalenzrelation $\sim$ auf $X$ durch $x \sim y \Leftrightarrow x - y ∈ Y$. Dann wird die Menge der Äquivalenzklassen mit vertreterweiser Addition und Multiplikation auch ein $\K$-Vektorraum. Wir schreiben für diesen Vektorraum $X/Y$. \end{bemerkung-nn} \section{Beispiele} \begin{beispiel} Der $ℝ^n$ ist ein linearer Raum über dem Körper $ℝ$. Der $ℂ^n$ ist sowohl ein $ℂ$- als auch ein $ℝ$-Vektorraum. \end{beispiel} \begin{beispiel} Sei $[a,b] ⊂ ℝ$, $a < b$. Dann ist \[ C[a,b] = \{x: [a,b] → \K, x \text { ist stetig}\} \] ein $\K$-Vektorraum mit $\dim C[a,b] = ∞$. Zum Beispiel sind die Monome $(t^k)_{k ∈ ℕ}$ ein unendliches linear unabhängiges System, jedoch keine Basis. Tatsächlich ist jede Basis dieses Raumes überabzählbar. \end{beispiel} \section{Lineare Abbildungen} \begin{definition} Seien $X, Y$ lineare Räume über $\K$. $A: X → Y$ heißt \emph{linear}, falls für alle $x_1, x_2 ∈ X$ und $α, β ∈ \K$ gilt: \[ A(αx_1 + βx_2) = αA(x_1) + βA(x_2). \] $A: X → \K$ heißt \emph{lineares Funktional}. Für $A$ linear heißt $R(A) = \im A = \{A(x): x ∈ X\}$ der \emph{Bildraum} von $A$ und $N(A) = \ker A = \{ x ∈ X: A(x) = 0\}$ der \emph{Kern} von $A$. \end{definition} \begin{bemerkung} Sei $A: X → Y$ linear. \begin{enumerate} \item Sei $M ⊂ X $ ein linearer Unterraum. Dann ist $A(M) ⊂ Y$ wieder ein linearer Unterraum und es gilt $\dim A(M) \le \dim M$ mit Gleichheit bei injektivität. \item Es gilt \[ A \text{ injektiv} \Longleftrightarrow N(A) = \{ 0\}. \] Allgemeiner ist \[ X/(N(A)) \cong \im A. \] \item Falls $\dim X = \dim Y = n < ∞$, dann ist $A$ genau dann injektiv, wenn $A$ surjektiv ist. \item $A: X → Y$ ist linear und bijektiv genau dann, wenn es eine lineare Umkehrabbildung $A^{-1}: Y → X$. \item Falls so ein $A: X → Y$ linear und bijektiv existiert, nennen wir $X$ und $Y$ \emph{linear isomorph.} $A$ heißt dann ein \emph{linearer Isomorphismus}. Nur falls $\dim X = \dim Y < ∞$ sind $X$ und $Y$ auch „topologisch“ isomorph. In diesem Fall erhält man die Prototypen $ℝ^n$ und $ℂ^n$ für endlich-dimensionale Vektorräume und andere gitbt es nicht (die sie auch als Topologische Räume isomorph sind). \end{enumerate} \end{bemerkung} \begin{beispiel-nn} $X = \{ x: [a,b] → ℝ, x, \dot x, \ddot x \text{ stetig},\; x(a) = \dot x(a) = 0\}$ ist ein linearer Raum. Sei $Y = C[a,b]$ und $A: X → Y$ gegeben durch \[ (Ax)(t) := \ddot x(t) + c_1 (t) \dot x (t) + c_2 (t) x(t), \quad t ∈ [a,b], c_1,c_2 ∈ C[a,b]. \] Dann ist $A$ linear, weil differenzieren linear ist und $A$ ist injektiv: Zunächst ist $x = 0$ eine Lösung der linearen Differentialgleichung zweiter Ordnung $Ax = 0$. Die Theorie der Differentialgleichungen sagt uns, dass diese Differentialgleichung eine eindeutige Lösung des Anfangswertsproblems ist. $A$ ist aber auch surjektiv: Sei $y ∈ Y$ gegeben, dann suchen wir $x ∈ X$ mit $Ax = y$. Also wollen wir eine inhomogene Differentialgleichung zweiter Ordnung lösen. Auch diese ist nach der Theorie von gewöhnlichen Differentialgleichungen eindeutig lösbar. Also ist $A$ bijektiv, das heißt, es gibt eine lineare Abbildung $A^{-1}: Y → X$. Diese Inverse ist in der Regel schlecht anzugeben. Einen einfacheren Spezialfall dazu wird in der Übung behandelt. \end{beispiel-nn} \begin{beispiel-nn} Sei $X = Y = C[a,b]$, $A: X → X$ gegeben durch \[ (Ax)(t) := ∫_a^b k(s,t) x(s) ds, \quad t ∈ [a,b], \] wobei $k : [a,b] × [a,b] → ℝ$ stetig und gegeben ist. Dann ist $A$ linear, da das Integral linear ist. Auch ist, wenn $λ ∈ ℝ$ ein Parameter ist, die Abbildung \[ (A_λx)(t) := λx(t) - (Ax)t), \quad t ∈ [a,b] \] linear. Die Probleme $Ax = y$ (bei gegebenem $y ∈ Y$ und gesuchtem $x ∈ X$) oder $A_λ x = 0$ (gesucht ist $λ ∈ ℝ$ und eine nichttriviale Lösung $x ∈ X \setminus \{ 0\}$) heißen Integralgleichungen erster und zweiter Ordnung. \end{beispiel-nn} \begin{beispiel-nn} Sei $X = C[a,b]$, $A : X → ℝ$ mit \[ Ax = x(t_0), \] wobei $t_0 ∈ [a,b]$ fest gewählt sei. Eine andere lineare Abbildung $A: X → ℝ$ ist gegeben durch \[ Ax = ∫_a^b x(t) dt \] Dann sind beide Abbildungen $A$ linear und nicht injektiv, aber surjektiv. \end{beispiel-nn} \begin{beispiel-nn} Sei $X = \ell^2$, $A: X → X$. Für $x = (ξ_n)_{n ∈ ℕ}$ sei \[ Ax = (0,ξ_1, ξ_2, \dots) ∈ \ell^2. \] $A$ heißt (Rechts-)Shiftoperator und ist linear und injektiv, jedoch nicht surjektiv. Solche Abbildungen gibt es für $\dim X = \dim Y < ∞$ nicht. \end{beispiel-nn} \section{Duale Räume} $A: X → \K$ sei ein lineares Funktional, $X$ ein linearer Raum. Wir verwenden ein neues Symbol (statt $A$) \[ x': X → \K = \begin{cases} ℝ \\ ℂ \end{cases} \text{ linear}. \] Wir schreiben nun \[ x'(x) =: \langle x, x' \rangle = \langle x, x' \rangle_{X × X^f} ∈ \K. \] Wir setzen \[ X^f := \left\{ x': x' \text{ ist lineares Funktional auf } X \right\}. \] Hierbei sollte man nicht $x'$ nicht mit der Ableitung von $x$ verwechseln. Auch ist $\langle -, - \rangle_{X × X^f}$ kein Skalarprodukt. Der Raum $X^f$ wird auf natürlicher Weise zum linearen Raum mit \[ (αx_1' + βx_2')(x) := αx_1'(x) + βx_2'(x), \quad x ∈ X, x_1', x_2' ∈ X^f, α, β ∈ \K. \] So ist \[ \langle -,- \rangle_{X×X^f}: X × X^f → \K \] bilinear. \begin{definition} $X^f$ heißt der \emph{algebraische Dualraum} zu $X$. $X^{ff} := (X^f)^f$ heißt der \emph{biduale Raum} zu $X$. \end{definition} \begin{beispiel-nn} $X^{ff}$ liefert die kanonische Abbildung \[ J: X → X^{ff}, \; x ↦ J(x) = x'' \] mit \[ \langle x', x'' \rangle := \langle x. x' \rangle \quad ∀x' ∈ X^f. \] Damit ist $x'': X^f → \K$ linear wohldefiniert. \end{beispiel-nn} \begin{definition} Der lineare Raum $X$ heißt \emph{algebraisch reflexiv}, falls $J$ bijektiv ist (und damit $X$ linear isomorph zu $X^{ff}$) ist. \end{definition} \begin{bemerkung} $X$ ist genau dann algebraisch reflexiv, wenn $\dim X < ∞$ ist. Im Fall $\dim X < ∞$ lässt sich leicht eine duale Basis angeben: Sei dazu $M := \{x_1,…,x_n\}$ eine Basis von $X$. Dann wird durch \[ \langle x_i, x_k' \rangle := δ_{i,k} \] und linearer Fortsetzung die Menge $ M := \{x_1',…,x_n'\} ⊂ X^f$ erklärt. Dann ist $M'$ eine Basis von $X'$, die die \emph{duale Basis} von $M$ genannt wird. Tatsächlich ist $X^f$ im Falle $\dim X = ∞$ wesentlich größer. Man wählt deshalb eine (neue) Defintion des Dualraums: \end{bemerkung} \begin{definition}[Dualraum] Zu einem linearen Raum $X$ ist \[ X' := \left\{ x' : X → \K, x' \text{ linear und stetig} \right\} ⊂ X^f \] der Dualraum von $X$. \end{definition} Um Allerdings von Stetigkeit reden zu können, müssen wir zunächst \emph{Topologien} einführen. \chapter{Topologie} \section{Topologische Räume} \begin{definition} Sei $X$ eine Menge und $\mathcal T ⊂ \Pot X$ eine Menge von Teilmengen von $X$. $\mathcal T$ heißt eine \emph{Topologie} auf $X$, falls $\mathcal T$ unter endlichen Durchschnitten und beliebigen Vereinigungen abgeschlossen ist. Insbesondere muss $\mathcal T$ $\emptyset$ als leere Vereinigung und $X$ als leeren Schnitt enthalten. $(X,\T)$ heißt dann \emph{topologischer Raum}. Die Elemente von $\T$ heißen \emph{offene Mengen} \end{definition} \begin{beispiele} \begin{enumerate}[label=(\alph*)] \item Für alle Mengen $X$ ist $\T = \{ ∅, X\}$ eine Topologie auf $X$, die sogenannte \emph{indiskrete Topologie}, \emph{gröbste Topologie} oder auch \emph{Klumpentopologie}. \item Für alle Mengen $X$ ist $\T = \Pot X$ eine Topologie, die sogenannte \emph{diskrete Topologie} oder \emph{feinste Topologie} auf $X$. \item In Analysis I wird eine Menge $U ⊂ ℝ$ für offen erklärt, wenn es zu jedem $x ∈ U$ ein $ε > 0$ gibt, so dass für alle $ y ∈ ℝ$ mit $|x - y| < ε$ auch $y ∈ U$ gilt. Aus der Analysis ist bekannt, dass die so definierten offenen Mengen den Axiomen genügen. Diese Topologie $\Tnat$ wird \emph{natürliche Topologie} genannt. \item Sei $X$ eine beliebige Menge. Die \emph{cofinite Topologie} auf $X$ wird definiert als \[ \Tcof = \{ Y ⊂ X: Y = ∅\; \text{oder}\; \complement_X Y\, \text{ist endlich}\} \] \item Der \emph{Sierpinski-Raum} ist die Menge $\{0,1\}$ versehen mit der Topologie $\{ ∅, \{0\}, \{0,1\}\}$. \end{enumerate} \end{beispiele} \begin{definition} Sei $M ⊂ X$ \begin{enumerate} \item $M$ heißt \emph{abgeschlossen}, wenn $X \setminus M$ offen ist. \item $U ⊂ X$ heißt \emph{Umgebung von $A$}, wenn es eine offene Menge $V$ gibt mit $A ⊂ V ⊂ U$. Wir setzen \[ \U_A := \U_A (\T) := \{ U ⊂ X : U\; \text{Umgebung von $A$}\}. \] $\U_A$ heißt \emph{Umgebungssystem} oder \emph{Umgebungsfilter} von $A ⊂ X$. Für $x ∈ X$ setzen wir $\U_x := \U_{\{x\}}$. $x$ heißt dann \emph{innerer Punkt} von $U$ für alle $U ∈ \U_x$. \item $x ∈ X$ heißt \emph{Häufungspunkt} von $M$, falls jede Umgebung von $x_0$ ein $y ∈ M$ enthält mit $y \ne x$.k \item Das \emph{Innere von M} ist \[ M^\circ := \bigcup \left\{ U ∈ \T: U ⊂ M \right\} \] die größte offene Menge, die in $M$ enthalten ist. \item Der \emph{Abschluss von} M ist \[ \cl M := \bigcap \left\{ U ⊂ M: U \text{ abgeschlossen} \right\} \] die kleinste abgeschlossene Menge, die $M$ enthält. \item $M$ heißt \emph{kompakt}, falls jede offene Überdeckung von $M$ eine endliche Teilüberdeckung besitzt. \item $M$ heißt \emph{dicht}, falls $\cl M = X$. \item $M$ heißt \emph{nirgends dicht}, falls $(\cl M)^\circ = \emptyset$. \end{enumerate} \end{definition} \begin{bemerkung} \begin{enumerate} \item $M^\circ ⊂ M ⊂ \cl M$. \item $M^\circ$ ist die Menge der inneren Punkte von $M$. \item $M$ ist genau dann abgeschlossen, wenn $M = \cl M$. \end{enumerate} \end{bemerkung} %%% Local Variables: %%% mode: latex %%% TeX-master: "funkana" %%% End: