Funktional analysis

Mitschrift zur Vorlesung

Prof. Dr. Maier-Paape

WS 17/18

Inhaltsverzeichnis

1	Die	Die lineare Struktur			
	1	Der lineare Raum	7		
	2	Beispiele	8		
	3	Lineare Abbildungen	8		
	4	Duale Räume	10		
2	Торо	ologie	13		
	1	Topologische Räume	13		
	2	Metrische Räume	16		
	3	Vollständigkeit in metrischen Räumen und der Satz von Baire	17		
3	Торо	ologische lineare Räume	21		
	1	Normierte Räume	21		
	2	Topologische lineare Räume	23		
	3	Metrische lineare Räume und Quasi-normierte Räume	24		

Motivation

In der klassischen Analyis haben wir Funktionen im \mathbb{K}^n , wobei \mathbb{K} entweder \mathbb{R} oder \mathbb{C} ist, untersucht. Dabei war das Betrachten von Eigenschaften wie Konvergenz, Stetigkeit und Differenzierbarkeit sehr nützlich. Die Funktionalanalysis beschäftigt sich nun mit vergleichbaren Problemen in üblicherweise unendlich-dimensionalen Funktionenräumen. Hierfür werden wir versuchen, die aus der klassischen Analysis bekannten Untersuchungsmethoden zu verallgemeinern. Doch zunächst ein paar Probleme, für deren Lösung man die Funktionalanalysis benötigt.

Problem. Ein klassisches Beispiel aus der Variationsrechnung: Wir wollen die Funktion

$$f(u) = \int_0^{\pi} |u'(x)|^2 dx$$

unter den Nebenbedingungungen $u(0)=u(\pi)=0$ und $\int_0^\pi |u(x)|^2 dx=1$ minimieren. In der klassischen Analysis haben wir für Minimierungsprobleme mit Nebenbedingungungen Lagrange-Multiplikatoren genutzt. Im unendlich-dimensionalen Fall ist das jedoch nicht so einfach. Wir betrachten $f:Y\to\mathbb{R}$ wie oben, wobei Y eine Teilmenge des unendlich-dimensionalen Funktionenraums

$$X = \left\{ u \in C^1[0,\pi] : u(0) = u(\pi) = 0 \right\}$$

ist, die durch

$$Y = \left\{ u \in X : \int_0^\pi |u(x)|^2 dx = 1 \right\}$$

gegeben ist. Zwar ist Y (in der $\mathcal{L}^2([0,\pi])$ -Metrik) beschränkt und abgeschlossen, jedoch nicht kompakt.

Problem (Fourierreihenentwicklung). Sei $\mathcal{T} = \{1, \cos t, \sin t, \cos(2t), \sin(2t), ...\} = \{\phi_i\}_{i \in \mathbb{N}}$. Dann ist bekanntlich

$$\langle \phi_i, \phi_j \rangle = \int_0^{2\pi} \varphi_i(t) \varphi_j(t) dt = 2\pi \delta_{i,j},$$

wobei $\delta_{i,j}$ das Kronecker-Delta bezeichne. Also lässt sich durch Normierung ein Orthonormalsystem aus $\mathcal T$ gewinnen. Jetzt fragen wir uns, ob sich jede 2π -periodische Funktion u bezüglich eines geeigneten Konvergenzbegriffs in eine Reihe $u=\sum_{i\in\mathbb N}\alpha_i\varphi_i$ mit $\alpha_i\in\mathbb R$ entwickeln können. Bereits bekannt ist, dass das für das entsprechende endlichdimensionale Problem geht: Sei $T=\{e_1,...,e_n\}$ die kanonische Standardbasis des $\mathbb R^n$ Dann gilt bekanntlich

$$\langle e_i, e_j \rangle_{\mathbb{R}^n} = \delta_{i,j}$$

und für jedes $x \in \mathbb{R}^n$ ist

$$x = \sum_{i=1}^{n} \alpha_i e_i, \quad \alpha_i = \langle x, e_i \rangle_{\mathbb{R}^n}.$$

Wir fragen uns nach den Zusammenhängen zwischen den Problemen im endlich- und unendlich-dimensionalen.

Problem. Das Biegemoment eines Trägers kann man als Randwertaufgabe (gesucht ist $u:[0,1] \to \mathbb{R}$, gegeben sind $p,r:[0,1] \to \mathbb{R}$)

$$u''(t) + p(t)u(t) = r(t), \quad u(0) = u(1) = 0$$

bestimmen. Mit Hilfte der sogenannten Green'schen Funktion lässt sich diese Randwertaufgabe in eine Integralgleichung

$$(T_u)(t) := \int_0^1 G(t,s)(r(s) - p(s)u(s))ds = u$$

umwandeln. Das heißt, man sucht einen Fixpunkt eines Integraloperators T in einer geeigneten Menge von Funktionen.

Diese Probleme lassen sich mit der klassischen Analysis nicht mehr behandeln. In der Funktionalanalysis behandeln wir nun im Wesentlichen "Analysis in ∞ -dimensionalen Räumen" (meist Funktionenräume). Das heißt, wir wollen jetzt anstelle des \mathbb{K}^n allgemeinere Räume betrachten, die jodoch immer noch folgende beide Charakteristika aufweisen:

- (a) Die lineare Struktur (das heißt, Elemente lassen sich addieren und mit einem Skalar multiplizieren)
- (b) Die topologische Struktur (also insbesondere ein Konvergenzbegriff)

Unser Ziel ist es zunächst, die beiden Strukturen zu erarbeiten.

Kapitel 1

Die lineare Struktur

§1 Der lineare Raum

Sei im folgenden stets $\mathbb{K}=\mathbb{R}$ oder $\mathbb{K}=\mathbb{C}$. Zunächst die

(1.1) Definition (Vektorraum). Sei \mathbb{K} ein Körper. Eine Abelsche Gruppe (X, +) zusammen mit einer Abbildung

$$\cdot : \mathbb{K} \times X \to X$$

heißt \mathbb{K} -Vektorraum, falls für alle $\alpha, \beta \in \mathbb{K}$ und $x, y \in X$ gilt:

(V1)
$$\alpha x + y$$
) = $\alpha x + \beta y$

(V2)
$$(\alpha + \beta)x = \alpha x + \beta x$$

(V3)
$$(\alpha \beta) x = \alpha(\beta x)$$

(V4)
$$1 \cdot x = x$$

Bemerkung. Je nachdem, ob $\mathbb{K} = \mathbb{C}$ oder $\mathbb{K} = \mathbb{R}$ gilt, heißt X ein *komplexer* oder ein *reeller* Vektorraum.

Bemerkung. Eine nichtleere Teilmenge $Y \subset X$ ist bereits dann ein linearer Raum, falls aus $\alpha, \beta \in \mathbb{K}$, $x, y \in Y$ bereits $\alpha x + \beta y \in Y$ folgt, also Y abgeschlossen unter den Vektorraumoperationen ist. Y heißt dann *linearer Teilraum* oder auch *linearer Unterraum*.

Bemerkung. Zu jeder Teilmenge $M \subset X$ bildet die Menge aller Linearkombinationen von je endlich vieler Elemente einen linearen Teilraum von X. Dieser heißt die *lineare Hülle* von M oder der *Aufspann* von M

$$\operatorname{span} M = \left\{ x \in X : \exists l \in \mathbb{N}, \alpha_1, ..., \alpha_l \in \mathbb{K}, m_1, ..., m_l \in M \text{ mit } \sum_{i=1}^l \alpha_i m_i = x \right\}.$$

Bemerkung. $M = \{x_{\lambda}\}_{{\lambda} \in {\Lambda}} \subset X$ heißt *Basis* oder *Hamel-Basis* von X, falls M *linear unabhängig*, das heißt, $0 \in X$ lässt sich nur auf triviale Art und Weise als Linearkombination endlich vieler der x_{λ} schreiben, und span M = X ist.

Bemerkung. Besitzt X eine Basis von $n < \infty$ Elementen, dann heißt n die *Dimension* von X und wir schreiben dim X = n. Andernfalls heißt X unendlich-dimensional (dim $X = \infty$).

Bemerkung. Seien $X_1, X_2 \subset X$ lineare Teilräume. Dann ist

$$X_1 + X_2 := \{ \alpha x_1 + \beta x_2 : \alpha, \beta \in \mathbb{K}, x_1 \in X_1, x_2 \in X_2 \}$$

ebenfalls ein linearer Teilraum. Falls $X_1 \cap X_2 = \{0\}$, schreiben wir $X_1 \oplus X_2$ und nennen die Summe *direkt*.

Bemerkung. Sei Y ein linearer Teilraum von X. Definiere die Äquivalenzrelation \sim auf X durch $x \sim y \Leftrightarrow x - y \in Y$. Dann wird die Menge der Äquivalenzklassen mit vertreterweiser Addition und Multiplikation auch ein \mathbb{K} -Vektorraum. Wir schreiben für diesen Vektorraum X/Y.

§2 Beispiele

- **(2.1) Beispiel.** Der \mathbb{R}^n ist ein linearer Raum über dem Körper \mathbb{R} . Der \mathbb{C}^n ist sowohl ein \mathbb{C} als auch ein \mathbb{R} -Vektorraum.
- **(2.2) Beispiel.** Sei $[a,b] \subset \mathbb{R}$, a < b. Dann ist

$$C[a,b] = \{x : [a,b] \rightarrow \mathbb{K}, x \text{ ist stetig}\}$$

ein \mathbb{K} -Vektorraum mit dim $C[a,b]=\infty$. Zum Beispiel sind die Monome $(t^k)_{k\in\mathbb{N}}$ ein unendliches linear unabhängiges System, jedoch keine Basis. Tatsächlich ist jede Basis dieses Raumes überabzählbar.

§3 Lineare Abbildungen

(3.1) Definition. Seien X, Y lineare Räume über \mathbb{K} . $A: X \to Y$ heißt *linear*, falls für alle $x_1, x_2 \in X$ und $\alpha, \beta \in \mathbb{K}$ gilt:

$$A(\alpha x_1 + \beta x_2) = \alpha A(x_1) + \beta A(x_2).$$

 $A: X \to \mathbb{K}$ heißt *lineares Funktional*. Für A linear heißt $R(A) = \operatorname{im} A = \{A(x) : x \in X\}$ der *Bildraum* von A und $N(A) = \ker A = \{x \in X : A(x) = 0\}$ der *Kern* von A.

- (3.2) **Bemerkung.** Sei $A: X \rightarrow Y$ linear.
 - (a) Sei $M \subset X$ ein linearer Unterraum. Dann ist $A(M) \subset Y$ wieder ein linearer Unterraum und es gilt dim $A(M) \leq \dim M$ mit Gleichheit bei injektivität.

(b) Es gilt

$$A \text{ injektiv} \iff N(A) = \{0\}.$$

Allgemeiner ist

$$X/(N(A)) \cong \operatorname{im} A$$
.

- (c) Falls dim $X = \dim Y = n < \infty$, dann ist A genau dann injektiv, wenn A surjektiv ist.
- (d) $A: X \to Y$ ist linear und bijektiv genau dann, wenn es eine lineare Umkehrabbildung $A^{-1}: Y \to X$.
- (e) Falls so ein $A:X\to Y$ linear und bijektiv existiert, nennen wir X und Y linear isomorph. A heißt dann ein linearer Isomorphismus.

Nur falls dim $X = \dim Y < \infty$ sind X und Y auch "topologisch" isomorph. In diesem Fall erhält man die Prototypen \mathbb{R}^n und \mathbb{C}^n für endlich-dimensionale Vektorräume und andere gitbt es nicht (die sie auch als Topologische Räume isomorph sind).

Beispiel. $X = \{x : [a,b] \to \mathbb{R}, x, \dot{x}, \ddot{x} \text{ stetig}, \ x(a) = \dot{x}(a) = 0\}$ ist ein linearer Raum. Sei Y = C[a,b] und $A: X \to Y$ gegeben durch

$$(Ax)(t) := \ddot{x}(t) + c_1(t)\dot{x}(t) + c_2(t)x(t), \quad t \in [a,b], c_1, c_2 \in C[a,b].$$

Dann ist A linear, weil differenzieren linear ist und A ist injektiv: Zunächst ist x=0 eine Lösung der linearen Differentialgleichung zweiter Ordnung Ax=0. Die Theorie der Differentialgleichungen sagt uns, dass diese Differentialgleichung eine eindeutige Lösung des Anfangswertsproblems ist.

A ist aber auch surjektiv: Sei $y \in Y$ gegeben, dann suchen wir $x \in X$ mit Ax = y. Also wollen wir eine inhomogene Differentialgleichung zweiter Ordnung lösen. Auch diese ist nach der Theorie von gewöhnlichen Differentialgleichungen eindeutig lösbar.

Also ist A bijektiv, das heißt, es gibt eine lineare Abbildung $A^{-1}: Y \to X$. Diese Inverse ist in der Regel schlecht anzugeben. Einen einfacheren Spezialfall dazu wird in der Übung behandelt.

Beispiel. Sei $X = Y = C[a, b], A : X \rightarrow X$ gegeben durch

$$(Ax)(t) := \int_a^b k(s,t)x(s)ds, \quad t \in [a,b],$$

wobei $k : [a, b] \times [a, b] \rightarrow \mathbb{R}$ stetig und gegeben ist. Dann ist A linear, da das Integral

linear ist. Auch ist, wenn $\lambda \in \mathbb{R}$ ein Parameter ist, die Abbildung

$$(A_{\lambda}x)(t) := \lambda x(t) - (Ax)t$$
, $t \in [a, b]$

linear. Die Probleme Ax = y (bei gegebenem $y \in Y$ und gesuchtem $x \in X$) oder $A_{\lambda}x = 0$ (gesucht ist $\lambda \in \mathbb{R}$ und eine nichttriviale Lösung $x \in X \setminus \{0\}$) heißen Integralgleichungen erster und zweiter Ordnung.

Beispiel. Sei $X = C[a, b], A : X \to \mathbb{R}$ mit

$$Ax = x(t_0),$$

wobei $t_0 \in [a,b]$ fest gewählt sei. Eine andere lineare Abbildung $A:X \to \mathbb{R}$ ist gegeben durch

$$Ax = \int_{a}^{b} x(t)dt$$

Dann sind beide Abbildungen A linear und nicht injektiv, aber surjektiv.

Beispiel. Sei $X = \ell^2$, $A : X \to X$. Für $x = (\xi_n)_{n \in \mathbb{N}}$ sei

$$Ax = (0, \xi_1, \xi_2, \dots) \in \ell^2.$$

A heißt (Rechts-)Shiftoperator und ist linear und injektiv, jedoch nicht surjektiv. Solche Abbildungen gibt es für dim $X = \dim Y < \infty$ nicht.

§4 Duale Räume

 $A:X\to\mathbb{K}$ sei ein lineares Funktional, X ein linearer Raum. Wir verwenden ein neues Symbol (statt A)

$$x': X \to \mathbb{K} = \begin{cases} \mathbb{R} & \text{linear.} \end{cases}$$

Wir schreiben nun

$$x'(x) =: \langle x, x' \rangle = \langle x, x' \rangle_{X \times X^f} \in \mathbb{K}.$$

Wir setzen

$$X^f := \{x' : x' \text{ ist lineares Funktional auf } X\}.$$

Hierbei sollte man nicht x' nicht mit der Ableitung von x verwechseln. Auch ist $\langle -, - \rangle_{X \times X^f}$ kein Skalarprodukt.

Der Raum X^f wird auf natürlicher Weise zum linearen Raum mit

$$(\alpha x_1' + \beta x_2')(x) := \alpha x_1'(x) + \beta x_2'(x), \quad x \in X, x_1', x_2' \in X^f, \alpha, \beta \in \mathbb{K}.$$

So ist

$$\langle -, - \rangle_{X \times X^f} : X \times X^f \to \mathbb{K}$$

bilinear.

(4.1) Definition. X^f heißt der algebraische Dualraum zu X. $X^{ff} := (X^f)^f$ heißt der biduale Raum zu X.

Beispiel. Xff liefert die kanonische Abbildung

$$J: X \to X^{ff}, x \mapsto J(x) = x''$$

mit

$$\langle x', x'' \rangle := \langle x.x' \rangle \quad \forall x' \in X^f.$$

Damit ist $x'': X^f \to \mathbb{K}$ linear wohldefiniert.

(4.2) Definition. Der lineare Raum X heißt *algebraisch reflexiv*, falls J bijektiv ist (und damit X linear isomorph zu X^{ff}) ist.

(4.3) Bemerkung. *X* ist genau dann algebraisch reflexiv, wenn dim $X < \infty$ ist.

Im Fall dim $X < \infty$ lässt sich leicht eine duale Basis angeben: Sei dazu $M := \{x_1, ..., x_n\}$ eine Basis von X. Dann wird durch

$$\langle x_i, x_k' \rangle := \delta_{i,k}$$

und linearer Fortsetzung die Menge $M := \{x'_1, ..., x'_n\} \subset X^f$ erklärt. Dann ist M' eine Basis von X', die die *duale Basis* von M genannt wird. Tatsächlich ist X^f im Falle dim $X = \infty$ wesentlich größer. Man wählt deshalb eine (neue) Defintion des Dualraums:

(4.4) Definition (Dualraum). Zu einem linearen Raum *X* ist

$$X' := \{x' : X \to \mathbb{K}, x' \text{ linear und stetig}\} \subset X^f$$

der Dualraum von X.

Um Allerdings von Stetigkeit reden zu können, müssen wir zunächst *Topologien* einführen.

Kapitel 2

Topologie

§1 Topologische Räume

(1.1) Definition. Sei X eine Menge und $\mathcal{T} \subset \mathcal{P}(X)$ eine Menge von Teilmengen von X. \mathcal{T} heißt eine *Topologie* auf X, falls \mathcal{T} unter endlichen Durchschnitten und beliebigen Vereinigungen abgeschlossen ist. Insbesondere muss $\mathcal{T} \not D$ als leere Vereinigung und X als leeren Schnitt enthalten. (X,\mathcal{T}) heißt dann *topologischer Raum*. Die Elemente von \mathcal{T} heißen *offene Mengen*

- **(1.2) Beispiele.** (a) Für alle Mengen X ist $\mathcal{T} = \{\emptyset, X\}$ eine Topologie auf X, die sogenannte *indiskrete Topologie*, *gröbste Topologie* oder auch *Klumpentopologie*.
 - (b) Für alle Mengen X ist $\mathcal{T} = \mathcal{P}(X)$ eine Topologie, die sogenannte diskrete Topologie oder feinste Topologie auf X.
 - (c) In Analysis I wird eine Menge $U \subset \mathbb{R}$ für offen erklärt, wenn es zu jedem $x \in U$ ein $\varepsilon > 0$ gibt, so dass für alle $y \in \mathbb{R}$ mit $|x y| < \varepsilon$ auch $y \in U$ gilt. Aus der Analysis ist bekannt, dass die so definierten offenen Mengen den Axiomen genügen. Diese Topologie \mathcal{T}_{nat} wird *natürliche Topologie* genannt.
 - (d) Sei X eine beliebige Menge. Die cofinite Topologie auf X wird definiert als

$$\mathcal{T}_{\mathrm{cof}} = \{Y \subset X : Y = \emptyset \text{ oder } \mathbb{C}_X Y \text{ ist endlich} \}$$

(e) Der *Sierpinski-Raum* ist die Menge $\{0,1\}$ versehen mit der Topologie $\{\emptyset,\{0\},\{0,1\}\}$.

(1.3) Definition. Sei $M \subset X$.

- (a) M heißt abgeschlossen, wenn $X \setminus M$ offen ist.
- (b) $U \subset X$ heißt Umgebung von A, wenn es eine offene Menge V gibt mit $A \subset V \subset X$

U. Wir setzen

$$\mathcal{U}_A := \mathcal{U}_A(\mathcal{T}) := \{U \subset X : U \text{ Umgebung von } A\}.$$

 \mathcal{U}_A heißt Umgebungssystem oder Umgebungsfilter von $A\subset X$. Für $x\in X$ setzen wir $\mathcal{U}_x:=\mathcal{U}_{\{x\}}$. x heißt dann innerer Punkt von U für alle $U\in\mathcal{U}_x$.

- (c) $x \in X$ heißt Häufungspunkt von M, falls jede Umgebung von x_0 ein $y \in M$ enthält mit $y \neq x$.k
- (d) Das Innere von M ist

$$M^{\circ} := \bigcup \{ U \in \mathcal{T} : U \subset M \}$$

die größte offene Menge, die in M enthalten ist.

(e) Der Abschluss von Mist

$$\overline{M} := \bigcap \{ U \subset M : U \text{ abgeschlossen} \}$$

die kleinste abgeschlossene Menge, die M enthält.

- (f) *M* heißt *kompakt*, falls jede offene Überdeckung von *M* eine endliche Teilüberdeckung besitzt.
- (g) M heißt *dicht*, falls $\overline{M} = X$.
- (h) M heißt $nirgends\ dicht$, falls $(\overline{M})^{\circ} = \emptyset$.

(1.4) Bemerkung. (a) $M^{\circ} \subset M \subset \overline{M}$.

- (b) M° ist die Menge der inneren Punkte von M.
- (c) M ist genau dann abgeschlossen, wenn $M = \overline{M}$.

(1.5) Definition (Hausdorff-Raum). Sei (X,\mathcal{T}) eine topologischer Raum. Für alle $x,y\in X$ mit $x\neq y$ existieren $U\in\mathcal{U}_x,V\in\mathcal{U}_x$ mit $U\cap V=\emptyset$. Dann heißt (X,\mathcal{T}) Hausdorff-Raum bzw. genügt dem Trennungsaxiom.

(1.6) Definition (Konvergenz). Eine Folge $\{x_n\}_{n\in\mathbb{N}}\subset X$ heißt konvergent gegen $x_0\in X$, falls zu jeder Umgebung $U\in\mathcal{U}_{x_0}$ ein $n_0\in\mathbb{N}$ existiert, sodass $x_n\in U$ für alle $n\geq n_0$.

(1.7) Bemerkung. Man überlegt sich leicht, dass der Grenzwert x_0 in der Regel nicht eindeutig ist. Bsp: In $\mathcal{T} = \{X, \emptyset\}$ konvergiert jede Folge gegen jeden Punkt. Ist (X, \mathcal{T}) jedoch ein Hausdorff-Raum, so ist jeder Grenzwert eindeutig.

Beweis. Seien $x_0 \neq x_0'$ Grenzwerte von $(x_n)_{n \in \mathbb{N}} \subset X$. Dann existieren disjunkte Umgebungen $U, U' \in \mathcal{U}_{x_0}$. Weiterhin gibt es ein $n_0 \in \mathbb{N}$, so dass $x_n \in U$ für alle $n \geq n_0$ und $n_0' \in \mathbb{N}$, so dass $x_n \in U'$ für alle $n \geq n_0'$. Also gilt $x_{\max\{n_0,n_0\}} \in U \cap U'$ Das ist ein Widerspruch zur Disjunktheit der Umgebungen.

- **(1.8) Definition (Häufungspunkt).** $x_0 \in X$ heißt Häufungspunkt von $\{x_n\}_{n \in \mathbb{N}} \subset X$, falls zu jeder Umgebung $U \in \mathcal{U}_{x_0}$ und für alle $k \in \mathbb{N}$ ein $n \geq k \in \mathbb{N}$ existiert, sodass $x_n \in U$.
- **(1.9) Beispiel.** $\{x_n\}_{n\in\mathbb{N}}\subset\mathbb{R}$ mit natürlicher Topologie. $x_n=(-1)^n$ hat zwei HP ± 1 Achtung: $M=\{x_n:n\in\mathbb{N}\}=\{-1,1\}$ hat als Menge keine HP.
- (1.10) Bemerkung. Für die indiskrete Topologie ist jeder Punkt in X HP jeder Folge.
 - **(1.11) Definition (Stetigkeit).** $f:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$ heißt stetig, falls für alle $V\in\mathcal{T}_Y$ gilt, dass $f^{-1}(V)\in\mathcal{T}_X$.
- **(1.12) Bemerkung.** f ist stetig \iff f ist stetig in jedem Punkt
 - **(1.13) Definition (Homöomorphismus).** Ist $f:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)$ bijektiv und stetig, und $f^{-1}:(Y,\mathcal{T}_Y)\to (X,\mathcal{T}_X)$ auch stetig, dann heißt f Homöomorphismus. X und Y heißen homöomorph, falls so ein Homöomorphismus existiert.
 - **(1.14) Definition (Basis von Topologien und Umgebungen).** (a) Eine Familie $B \subset \mathcal{T}$ heißt Basis der Topologie in (X,\mathcal{T}) , falls $T = \cup M : M \subset B$.
 - (b) Eine Familie $B \subset \mathcal{U}_x$ von $x \in X$ heißt Umgebungsbasis des Punktes x, falls für alle $U \in \mathcal{T}, x \in U$ existiert ein $V \in B$ mit $x \in V \in U$.
- **(1.15) Beispiel.** Für die natürliche Topologie auf \mathbb{R}^n ist eine Basis der Topologie gegeben durch $B_{\varepsilon}(x): x \in X, \varepsilon > 0$ mit den offenen Kugeln $B_{\varepsilon}(x) = y \in R^n: \|x y\| < \varepsilon$. Sei $x \in \mathbb{R}^n$ fest. Dann ist $B_{1/n}(x): n \in \mathbb{N}$ eine abzählbare Umgebungsbasis von x
 - **(1.16) Definition (Relativtopologie oder Spurtopologie).** $M \subset \mathcal{T}$ eines topologischen Raumes (X,\mathcal{T}) lässt sich in natürlicher Weise zu einem topologischen Raum machen, nämlich mit $\mathcal{T} := M \cap V : V \in \mathcal{T}$.
- **(1.17) Bemerkung.** $M = M \cap X \in \mathcal{T}$ da $X \in \mathcal{T}$, d.h. M ist offen in der Spurtopologie. Achtung: M muss nicht offen in X sein.

(1.18) Definition. Seien zwei Topologien $\mathcal{T}_1, \mathcal{T}_2$ auf X gegeben. Wir sagen \mathcal{T}_1 ist feiner als \mathcal{T}_2 , falls $\mathcal{T}_1 \supset \mathcal{T}_2$. Wir sagen \mathcal{T}_1 ist gröber als \mathcal{T}_2 , falls $\mathcal{T}_1 \subset \mathcal{T}_2$. Wir sagen die Topologien sind gleich, falls $\mathcal{T}_1 = \mathcal{T}_2$.

(1.19) Bemerkung. Sei \mathcal{T}_1 feiner als \mathcal{T}_2 . Die feinere Topologie \mathcal{T}_1 enthält mehr offene Mengen, und damit zu jedem Grenzwert x_0 weniger konvergte Folgen.

Man zeigt leicht: \mathcal{T}_1 ist feiner als $\mathcal{T}_2 \iff$ Für alle $x \in X$ gilt: Seien $B_1 \subset T_1, B_2 \subset T_2$ Umgebungsbasen von x, dann gilt für alle $U \in B_1$, dass ein $V \in B_2$ existiert mit $V \subset U$.

(1.20) Beispiel. Folgende Topolgien auf \mathbb{R}^n sind gleich. \mathcal{T}_1 sei die Topologie, die durch die Kugeln $B_{\varepsilon}(x) = y \in R^n : \|x - y\| < \varepsilon$ erzeugt wird. \mathcal{T}_2 sei die Topologie, die durch die Quader $B_{\varepsilon}(x) = y \in R^n : \max_{1 \geq i \geq n} |y_i - x_i| < \varepsilon$ erzeugt wird.

(1.21) Definition (Produkttopologie). Seien $(X,\mathcal{T}_X),(Y,\mathcal{T}_Y)$ topologische Räume. Dann sit die Familie von Mengen $\{U_X\times U_Y:U_X\in\mathcal{T}_X,U_Y\in\mathcal{T}_Y\}\subset 2^{X\times Y}$ eine Basis der Topologie $\mathcal{T}_{X\times Y}$ im kartesischen Produkt $X\times Y$. Bemerkung: Es genügt auch wenn U_X,U_Y über Basen von $\mathcal{T}_X,\mathcal{T}_Y$ genommen werden.

§2 Metrische Räume

- (2.1) Lemma (Eigenschaften metrischer Räume). Sei (X, d) ein metrischer Raum.
 - (a) Jeder Punkt $x \in X$ besitzt eine abzählbare Umgebungsbasis

$$\{B_{1/n}(x), n \in \mathbb{N}\}.$$

(b) Es gilt

$$\lim_{n\to\infty}x_n=x\iff\lim_{n\to\infty}d(x,x_n)=0.$$

- (c) Es ist $x_0 \in M$ genau dann ein innerer Punkt von $M \subset X$, wenn ein $\varepsilon > 0$ existiert mit $B_{\varepsilon}(x_0) \subset M$.
- (d) M ist nirgends dicht in X genau dann, wenn es zu jeder Kugel $B_{\varepsilon}(x_0)$ mit $x_0 \in X, \varepsilon > 0$ eine Kugel $B_{\delta}(x_1) \subset B_{\varepsilon}(x_0)$ mit $B_{\theta}(x_1) \cap M = \emptyset$ gibt.
- (e) Seien (X, d_X) und (Y, d_Y) metrische Räume. Dann ist auch $(X \times Y, d_{X \times Y})$ ein metrischer Raum vermöge der Metrik

$$d_{X\times Y}((x_1,y_1),(x_2,y_2)):=\max\{d_x(x_1,x_2),d_y(y_1,y_2)\}$$

oder auch mit

$$d_{X\times Y}((x_1,y_1),(x_2,y_2)):=\sqrt{d_x^2(x_1,x_2)+d_y^2(y_1,y_2)}.$$

Tatsächlich induzieren diese beiden Metriken die gleiche Topologie (nämlich die Produkttopologie)

(f) Homöomorphismen $f:X\to Y$ (für metrische Räume X,Y), die die Metrik respektieren, das heißt

$$d_X(x_1, x_2) = d_Y(f(x_1), f(x_2)) \quad \forall x_1, x_2 \in X$$

heißen Isometrien.

(g) Ein metrischer Raum muss im allgemeinen keine lineare Struktur haben. Man betrachte hierzu die Menge $X := \{1, 2, 3, 4, 5, 6\}$ mit der diskreten Metrik. Diese kann keine Vektorraumstruktur haben, da |X| = 6 keine Primzahlpotenz ist.

Beweis. Der Beweis wird aufgrund seiner Trivialität den Lesern zur Übung überlassen, da er wirklich nur Einsetzen der Definitionen ist. □

Nun ein paar Charakterisierungen von kompakten Mengen in metrischen Räumen.

- **(2.2) Satz.** *Im metrischen Raum* (X, d) *sind äquivalent:*
 - (a) $K \subset X$ ist kompakt (überdeckungskompakt)
 - (b) Jede Folge in K besitzt mindestens einen Häufungspunkt in K (abzählbar kompakt)
 - (c) Jede Folge in K besitzt eine konvergente Teilfolge mit Grenzwert in K (folgenkompakt)
- **(2.3) Bemerkung.** Der Satz gilt so im allgemeinen Hausdorff-Raum *nicht*. Für $_{n}(b) \Rightarrow (a)^{n}$ benötigt man zusätzlich das zweite Abzählbarkeitsaxiom, also die Existenz einer abzählbaren Basis der Topologie. Für $_{n}(b) \Rightarrow (c)^{n}$ benötigt man das erste Abzählbarkeitsaxiom, also die Existenz von abzählbaren Umgebungsbasen für jeden Punkt.
- §3 Vollständigkeit in metrischen Räumen und der Satz von Baire

(3.1) Definition. Eine Folge $(x_n)_{n\in\mathbb{N}}\subset X$ in (X,d) heißt *Cauchy-Folge*, falls zu jedem $\varepsilon>0$ ein $N=N(\varepsilon)$ existiert mit $d(x_m,x_n)<\varepsilon$ für alle $n,m\geq N$.

(3.2) Lemma. Jede Konvergente Folge $(X_n)_{n\in\mathbb{N}}\subset X$ ist auch eine Cauchy-Folge.

(3.3) Definition. Der metrische Raum (X,d) heißt *vollständig*, falls jede Cauchy-Folge in (X,d) konvergiert.

Nicht jeder metrische Raum braucht vollständig zu sein (man betrachte hierfür z.B. \mathbb{Q} und die Folge der Partialsummen der Dezimalbruchentwicklung von $\sqrt{2}$), jedoch lässt sich jeder metrische Raum zu einem vollständigen Erweitern.

(3.4) Satz. Jeder metrische Raum (X,d) lässt sich in einen bis auf Isometrie eindeutig bestimmten kleinsten vollständigen metrischen Raum (\tilde{X},\tilde{d}) einbetten. Dieser Raum (\tilde{X},\tilde{d}) heißt die Vervollständigung von (X,d).

Beweis. Zwei Cauchyfolgen $(x_n)_{n\in\mathbb{N}}$ und $(y_n)_{n\in\mathbb{N}}$ seien äquivalent, falls $d(x_n,y_n) \xrightarrow{n\to\infty} 0$. Hierdurch ist eine Äquivalenzrelation definiiert. Sei $[(x_n)_{n\in\mathbb{N}}]$ die vom Repräsententaten $(x_n)_{n\in\mathbb{N}}$ erzeugte Klasse. Man setzt

$$\tilde{X} := \{ [(x_n)_{n \in \mathbb{N}}] : (x_n)_{n \in \mathbb{N}} \text{ ist Cauchy-Folge in } (X, d) \}$$

und

$$\tilde{d}([(x_n)_{n\in\mathbb{N}}],[(y_n)_{n\in\mathbb{N}}]):=\lim_{n\to\infty}d(x_n,y_n).$$

Dann ist $(d(x_n, y_n))_{n \in \mathbb{N}}$ eine Cauchy-Folge in \mathbb{R} , da

$$|d(x_n,x_m)-d(y_m,y_m)|\leq \underbrace{d(x_n,x_m)}_{\to 0} + \underbrace{d(y_n,y_m)}_{\to 0}.$$

Da $\mathbb R$ bekanntlich vollständig ist, existiert somit der Grenzwert. Ferner ist $\tilde d$ Repräsentatenunabhängig, also wohldefiniert: Seien $(\tilde x_n)$ und $(\tilde y_n)$ andere Repräsentaten. Dann ist

$$d(x_n, y_n) \leq \underbrace{d(x_n, \tilde{x}_n)}_{\to 0} + d(\tilde{x}_n, \tilde{y}_n) + \underbrace{d(\tilde{y}_n, y_n)}_{\to 0}.$$

Die umgekehrte Ungleichung ergibt sich aus Vertauschung der Rollen. Man rechnet leicht nach, dass (\tilde{X}, \tilde{d}) ein vollständiger Raum ist. Wir können (X, d) durch die entsprechenden konstanten Folgen isometrisch in \tilde{X} einbetten.

Bemerkung. Wendet man diese Technik auf \mathbb{Q} mit der natürlichen Metrik an, dann erhält man (\mathbb{R},d) als vollständige Hülle.

(3.5) Satz (Schachtelsatz). Sei (X,d) ein vollständiger metrischer Raum und seien $(x_n)_{n \in \mathbb{N}} \subset X$ und $(r_n)_{n \in \mathbb{N}} \subset (0,\infty)$ Folgen mit der Eigenschaft

(a)
$$\overline{B}_{r_{n+1}}(x_{n+1}) \subset B_{r_n}(x_n)$$

(b)
$$\lim_{n\to\infty} r_n = 0$$
.

Dann gibt es genau ein $x_0 \in X$ mit $x_0 \in \bigcap_{n \in \mathbb{N}\overline{B}_{r_n}(x_n)}$.

Beweis. Für $p \in \mathbb{N}$ beliebig gilt

$$\overline{B}_{r_{n+p}}(x_{n+p}) \subset \overline{B}_{r_n}(x_n).$$

Also

$$d(x_{n+p},x_n) \le r_n \xrightarrow{n \to \infty} 0.$$

Damit ist $(x_n)n \in \mathbb{N}$ eine Cauchyfolge und damit konvergiert gegen ein $x_0 \in X$. Außerdem gilt

$$d(xp,x_n) \leq \underbrace{d(x_0,x_{n+p})}_{\to 0(p\to\infty)} + \underbrace{d(x_{n+p},x_n)}_{\leq r_n}.$$

Damit folgt für $p \to \infty$

$$d(x_0, x_n) \le r_n \quad \forall n \in \mathbb{N}$$

also $x_0\in\bigcap_{n\in\mathbb{N}}\overline{B}_{r_n}(x_n)$. Für die Eindeutigkeit sei \tilde{x}_0 ebenfalls in $\bigcap_{n\in\mathbb{N}}\overline{B}_{r_n}(x_n)$. Dann folgt

$$d(x_0, \tilde{x}_0) \le \underbrace{d(x_0, x_n)}_{\le r_n} + \underbrace{d(x_n, \tilde{x}_0)}_{\le r_n} \le 2r_n \xrightarrow{n \to \infty} 0.$$

Doch damit war bereits $x_0 = \tilde{x}_0$.

(3.6) Definition. Eine Teilmenge M eines metrischen Raumes (X,d) heißt von erster Kategorie oder mager, falls sie die Vereinigung abzählbar vieler in X nirgends dichter Mengen ist. Andernfalls heißt M von zweiter Kategorie.

Der folgende Satz wird beim Beweis mehrerer fundamentaler Sätze benötigt, z.B beim Prinzip der gleichmäßigen Beschränktheit oder dem Open-Mapping-Theorem.

(3.7) Satz (Baire). Jede nichtleere offene Menge eines vollständigen metrischen Raumes (X,d) ist von zweiter Kategorie (insbesondere X selbst)

Beweis. Sei $\emptyset \neq M \subset X$ offen. Wir nehmen umgekehrt an, M wäre von erster Kategorie, das heißt

$$M \subset \bigcup_{n \in \mathbb{N}} M_n$$

mit $M_n\subset X$ nirgends dicht. Wähle $x_0\in M$. Da M offen ist, gibt es ein $r=r_0>0$ mit $B_{r_0}(x_0)\subset M$. Da M_1 nirgends dicht ist, gibt es $r_1>0$ und $x_1\in X$ mit

$$B_{r_1}(x_1) \subset B_{r_0/2}(x_0)$$

und $B_{r_1}(x_1) \cap M_1 = \emptyset$. Analog finden wir, da M_2 nirgends dicht ist, $r_2 > 0$ und $x_2 \in X$ mit

$$B_{r_2}(x_2) \subset B_{r_1/2}(x_1)$$

und $B_{r_2}(x_2) \cap M_2 = \emptyset$. Durch Fortsetzen dieses Schemas finden wir eine Folge $(x_n)_{n \in \mathbb{N}} \subset X$ und Radien $(r_n)_{n \in \mathbb{N}} \subset (0, \infty)$ mit $r_n \leq r/2^n \xrightarrow{n \to \infty} 0$. Damit sind alle Voraussetzungen von Satz 3.5 erfüllt. Folglich existiert genau ein

$$\tilde{x} \in \bigcap_{n \in \mathbb{N}} B_{r_n}(x_n) \subset B_r(x_0) \subset M.$$

Aber $\tilde{x} \notin M_n$ für alle $n \in \mathbb{N}$ Folglich ist auch \tilde{x} nicht in $\bigcup_{n \in \mathbb{N}} M_n = M$. Das ist ein Widerspruch. Also ist M von zweiter Kategorie.

Kapitel 3

Topologische lineare Räume

Erklärtes Ziel dieses Kapitels wird sein, die beiden Strukturen aus den vorherigen beiden Kapiteln, also die Topologie und den linearen Raum zusammenzuführen.

(0.1) Definition. Ein linearer Raum X über dem Körper \mathbb{K} mit Topologie \mathcal{T} heißt topologischer linearer Raum, falls die Vektorraumoperationen (+ : $X \times X \to X$ und $\cdot : \mathbb{K} \times X \to X$) stetig sind.

Bemerkung. Stetigkeit der Vektorraumoperationen sollte als minimales Kompatibilitätskriterium der beiden Strukturen gefordert werden. Tatsächlich ist es im Allgemeinen gar nicht erfüllt. Erst im normierten Raum bekommt man diese Stetigkeit geschenkt.

§1 Normierte Räume

(1.1) Definition. Sei X ein linearer Raum über \mathbb{K} . Die Abbildung $\|\cdot\|: X \to [0, \infty)$ heißt *Norm* auf X, falls für alle $x,y \in X$, $\alpha \in K$ gilt:

- (a) $||x|| = 0 \iff x = 0$
- (b) $\|\alpha x\| = |\alpha| \|x\|$
- (c) $||x + y|| \le ||x|| + ||y||$

 $(X, \|\cdot\|)$ heißt dann *normierter Raum*.

(1.2) Bemerkung. Durch d(x,y) := ||x - y|| wird ein normierter Raum auch ein metrischer, also insbesondere auch ein topologischer Raum. Diese induzierte Topologie auf $(X, \|\cdot\|)$ heißt *Normtopologie*.

Ohne die lineare Struktur macht der normierte Raum gar keinen Sinn, da für die Definition einiger der Normaxiome die Vektorraumoperationen verwendet werden.

(1.3) Beispiele. (a) Betrachte den \mathbb{R}^n mit $\|x\|_p := \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$ mit $1 \le p < \infty$ ist ein normierter Raum, genauso wie mit $\|x\|_{\infty} := \max_{1 \le i \le n} |x_i|$. Insbesondere gibt es im

 \mathbb{R}^n überabzählbar viele verschiedene Normen. Wir werden jedoch später sehen, dass diese Normen alle die gleiche Topologie erzeugen.

(b) Der Raum aller stetigen Funktionen auf einem kompaktem Intervall C[a,b] mit $\|x\|_{\infty} := \max_{t \in [a,b]} |x(t)|$ ist ein normierter Raum. Außerdem wird durch

$$||x|| := \int_{a}^{b} |x(t)| dt$$

ebenfalls eine Norm definiert.

(c) Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt. Dann wird $C(\overline{\Omega})$ mit

$$\|x\|_{\infty} := \max_{t \in \overline{\Omega}} |x(t)|$$

auch zu einem normierten Raum.

(d) $L^p(\Omega)=\mathcal{L}^p(\Omega)/\mathcal{N}$, wobei $\mathcal{N}=\{f:\Omega\to\mathbb{R}, f(t)=0 \text{ fast "überall}\}$ ist mit

$$||x|| := \left(\int_{\Omega} |x(t)|^p dt\right)^{1/p}$$

ein normierter Raum, wobei $1 \le p < \infty$.

(e) ℓ^p mit

$$\|x\|_p := \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

ist ebenfalls ein normierter Raum, wobei $1 \le p < \infty$.

(1.4) Lemma. Sei $(X, \|\cdot\|)$ ein normierter Raum. Dann sind die Abbildungen $+, \cdot$ und $\|\cdot\|$ stetig.

Beweis. Für beliebige Folgen $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}\subset X$, $(\alpha_n)_{n\in\mathbb{N}}$ mit $\lim x_n=x$, $\lim y_n=y$, $\lim \alpha_n=\alpha$ gelten

$$||(x_n + y_n) - (x + y)|| \le ||x - x_n|| + ||y - y_n||$$

sowie

$$\|\alpha_n x_n - \alpha x\| \le |\alpha_n| \|x_n - x\| + \|x\| |\alpha_n - \alpha|$$

und

$$|||x_n|| - ||x||| \le ||x_n - x||$$

nach der umgekehrten Dreiecksungleichung. Folglich sind die zu betrachtenden Abbildungen alle folgenstetig, und, da metrische Räume stets dem ersten Abzähhlbarkeitsaxiom genügen, auch stetig.

(1.5) Korollar. Jeder normierte Raum versehen mit der Normtopologie ist ein topologischer linearer Raum. Deshalb ist auch keine Unterscheidung zwischen normierten Räumen und normierten linearen Räumen nötig.

§2 Topologische lineare Räume

Bemerkung. Hierbei sei stetis die Topologie von $X \times X$ die Produktopologie, bei den Körpern $\mathbb{K} = \begin{cases} \mathbb{R} & \text{die übliche Topologie. Wir schreiben im Folgenden für Mengen} \\ M, M_1, M_2 \subset X \text{ und } \alpha \subset \mathbb{K} \text{ nun} \end{cases}$

$$M_1 + M_2 := s(M_1, M_2) := \{x + y : x \in M_1, y \in M_2\},$$

$$A \cdot M := m(A, M) := \{\alpha x : \alpha \in A, x \in M\}.$$

- **(2.1) Lemma.** Hat der topologische Raum (X, \mathcal{T}) auch eine lineare Struktur, so sind äquivalent:
 - (a) Die Addition s ist stetig.
 - (b) Für beliebiges $x, y \in X$ gilt: Zu jeder Umgebung $O_{x+y} \in \mathcal{T}$ existieren Umgebungen $O_x \in \mathcal{T}$ von x und $O_y \in \mathcal{T}$ von y mit $O_x + O_y \subset O_{x+y}$

Beweis. s ist stetig in (x,y) genau dann, wenn zu jeder Umgebung $O_{x,y} \in \mathcal{T}_X$ von (x,y) existiert eine Umgebung $U \subset \mathcal{T}_{X \times X}$ von (x,y) mit $s(U) \subset O_{x+y}$. Nach Definition der Produkttopologie existieren dann Umgebungen $O_x \in \mathcal{U}_x$ und $O_y \in \mathcal{U}_y$ mit $O_x \times O_y \subset U$. Damit ist

$$O_x + O_y = s(O_x, O_y) = s(O_x \times O_y) \subset s(U) \subset O_{x+y}.$$

Analog zeigt man die entsprechende Aussage für die skalare Multiplikation:

- **(2.2) Lemma.** Hat der topologische Raum (X, \mathcal{T}) auch eine lineare Struktur, so sind äquivalent:
 - (a) Die Addition m ist stetig.
 - (b) Für beliebiges $\alpha \in \mathbb{K}, x \in X$ gilt: Zu jeder Umgebung $O_{\alpha x} \in \mathcal{T}$ existieren Umgebungen $O_x \in \mathcal{T}$ von x und $O_\alpha \in \mathcal{T}$ von y mit $O_\alpha \times O_x \subset O_{\alpha x}$.

Betrachtet man insbesondere die Stetigkeit am Punke $\alpha=0$ und $x\in X$ beliebig, dann gilt also: Für jede Umgebung $O_0\in\mathcal{U}_0\subset X$ existiert eine Umgebung $O_x\in\mathcal{U}_x$ und ein

3 Metrische lineare Räume und Quasi-normierte Räume

r > 0, so dass

$$\forall \beta : |\beta| < r : \beta O_x \subset O_0.$$

Unmittelbar daraus erhalten wir folgendes Korollar:

(2.3) Korollar. Im topologischen Raum (X, \mathcal{T}) gilt für $x \in X$ beliebig und $(\beta_n)_{n \in \mathbb{N}} \subset \mathbb{R}$

$$\beta_n \xrightarrow{n \to \infty} 0 \implies \beta_n x \xrightarrow{n \to \infty} 0.$$

Definition. (a) Zu $x_0 \in X$ fest definieren wir den Translationsoperator

$$T_{x_0} := X \rightarrow X, x \mapsto x + x_0.$$

(b) Zu $\alpha_0 \in \mathbb{K}^*$ fest definieren wir den Multiplikationsoperator

$$M_{\alpha_0} := X \to X, x \mapsto \alpha_0 \cdot x.$$

(2.4) Lemma. Die Translationsoperatoren und Multiplikationsoperatoren sind Homöomorphismen.

Beweis. Das ist klar.

(2.5) Korollar (Invarianzprinzip). Im topologischen linearen Raum (X, \mathcal{T}) ist die Topologie bereits durch die offenen Umgebungen von $0 \in X$ bestimmt. Alle anderen offenen Mengen entstehen durch Translation.

Beweis. Das ist klar. □

§3 Metrische lineare Räume und Quasi-normierte Räume

(3.1) Definition. Eine Metrik $d: X \times X \to \mathbb{R}$ auf einem linearen Raum X heißt *translationsinvariant*, falls gilt:

$$\forall x, y, z \in X : d(x, y) = d(x + z, y + z),$$

oder äquivalent dazu:

$$\forall x, y \in X : d(x, y) = d(x - y, 0).k$$

Bemerkung. Ohne lineare Struktur macht das gar keinen Sinn!

(3.2) Definition. Ein metrischer Raum (X, d) mit linearer Struktur und translationsinvarianter Mertik d heißt *metrischer linearer Raum*, falls die Vektorraumoperationen stetig sind (in der von der Metrik induzierten Topologie).

(3.3) Lemma. Im metrischen Raum (X,d) mit linearer Struktur und translationsinvarianter metrik, dann ist die Addition immer stetig.

Beweis. Es genügt, da in metrischen Räumen Folgenstetigkeit und Stetigkeit äquivalent sind, zu zeigen, dass $\lim d(x_n+y_n,x+y)=0$, sofern $\lim d(x_n,x)=0$ und $\lim d(y_n,y)=0$. Dazu ist

$$d(x_n+y_n,x+y) \leq d(x_n+y_n) + d(x+y_n,x+y) = d(x_n,x) + d(y_n,y) \xrightarrow{n \to \infty} 0. \quad \Box$$

Beispiel. Sei X = C(a, b) mit der Metrik

$$d(x,y) := \min\{1, \sum_{t \in (a,b)} |x(t) - y(t)|\}.$$

Dann ist *d* eine translationsinvariante Metrik, aber *X* ist kein linearer Raum, da die Skalarmultiplikation nicht stetig ist.

Für die Stetigkeit der skalaren Multiplikation im Punkt $(\alpha, x) \in \mathbb{K} \times X$ hat man (nach dem $\varepsilon - \delta - Kriterium$)

$$\forall \varepsilon > 0 \exists \delta > 0 \exists r > 0 \forall \beta \in \mathbb{K} \forall y \in X : \frac{|\beta - \alpha| < r}{d(x,y) < \delta} \implies d(\beta y, \alpha x) < \varepsilon$$

(3.4) Lemma. Sei (X,d) ein metrischer Raum mit linearer Struktur und mit einer translationinvarianten Metrik. Dann ist X mit der von d erzeugten Topologie ein metrischer linearer Raum genau dann, wenn für alle $\alpha \in \mathbb{K}$, $x \in X$ und beliebige Nullfolgen $(x_n)_{n \in \mathbb{N}} \subset X$, $(\alpha_n)_{n \in \mathbb{N}} \subset X$ gilt

$$\begin{array}{c} \alpha x_n \xrightarrow{n \to \infty} 0 \\ \alpha x_n \xrightarrow{n \to \infty} 0 \\ \alpha_n x_n \xrightarrow{n \to \infty} 0 \end{array}$$

Beweis. "⇒": Skalare Multiplikation ist im metrischen linearen Raum stetig, also folgen die Aussagen sofort.

"⇐": Wegen der Äquivalenz von Stetigkeit und Folgenstetigkeit ist zu zeigen

$$\begin{cases} \alpha_n \xrightarrow{n \to \infty} \alpha \in \mathbb{K} \\ x_n \xrightarrow{n \to \infty} x \in X \end{cases} \implies \alpha_n x_n \xrightarrow{n \to \infty} \alpha x.$$

Sei dazu $z_n := x_n - x \in X$, $\gamma_n := \alpha_n - \alpha \in \mathbb{K}$. Dann ist

$$\gamma_n z_n + \gamma_n x + \alpha z_n = (\alpha_n - \alpha)(x_n - x) + (\alpha_n - \alpha)x + \alpha(x_n - x) = \alpha_n x_n - \alpha \times.$$

Somit ist

$$\begin{split} d(\alpha_n x_n, \alpha x) &= d(\alpha n x_n - \alpha x, 0) = d(\gamma_n z_n + \gamma n x + \alpha z_n, 0) \\ &\leq \underbrace{d(\gamma_n z_n, 0)}_{\to 0} + \underbrace{d(\gamma_n x, 0)}_{\to 0} + \underbrace{d(\alpha z_n, 0)}_{\to 0} \xrightarrow{n \to 0} 0. \end{split}$$

Da die Addition ohnehin immer stetig ist, sind wir fertig.