summaryrefslogtreecommitdiffstats
path: root/protocol/vusb/usbdrv/usbdrvasm18-crc.inc
diff options
context:
space:
mode:
Diffstat (limited to 'protocol/vusb/usbdrv/usbdrvasm18-crc.inc')
-rw-r--r--protocol/vusb/usbdrv/usbdrvasm18-crc.inc707
1 files changed, 0 insertions, 707 deletions
diff --git a/protocol/vusb/usbdrv/usbdrvasm18-crc.inc b/protocol/vusb/usbdrv/usbdrvasm18-crc.inc
deleted file mode 100644
index f83347df7..000000000
--- a/protocol/vusb/usbdrv/usbdrvasm18-crc.inc
+++ /dev/null
@@ -1,707 +0,0 @@
-/* Name: usbdrvasm18.inc
- * Project: V-USB, virtual USB port for Atmel's(r) AVR(r) microcontrollers
- * Author: Lukas Schrittwieser (based on 20 MHz usbdrvasm20.inc by Jeroen Benschop)
- * Creation Date: 2009-01-20
- * Tabsize: 4
- * Copyright: (c) 2008 by Lukas Schrittwieser and OBJECTIVE DEVELOPMENT Software GmbH
- * License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt)
- * Revision: $Id: usbdrvasm18-crc.inc 740 2009-04-13 18:23:31Z cs $
- */
-
-/* Do not link this file! Link usbdrvasm.S instead, which includes the
- * appropriate implementation!
- */
-
-/*
-General Description:
-This file is the 18 MHz version of the asssembler part of the USB driver. It
-requires a 18 MHz crystal (not a ceramic resonator and not a calibrated RC
-oscillator).
-
-See usbdrv.h for a description of the entire driver.
-
-Since almost all of this code is timing critical, don't change unless you
-really know what you are doing! Many parts require not only a maximum number
-of CPU cycles, but even an exact number of cycles!
-*/
-
-
-;max stack usage: [ret(2), YL, SREG, YH, [sofError], bitcnt(x5), shift, x1, x2, x3, x4, cnt, ZL, ZH] = 14 bytes
-;nominal frequency: 18 MHz -> 12 cycles per bit
-; Numbers in brackets are clocks counted from center of last sync bit
-; when instruction starts
-;register use in receive loop to receive the data bytes:
-; shift assembles the byte currently being received
-; x1 holds the D+ and D- line state
-; x2 holds the previous line state
-; cnt holds the number of bytes left in the receive buffer
-; x3 holds the higher crc byte (see algorithm below)
-; x4 is used as temporary register for the crc algorithm
-; x5 is used for unstuffing: when unstuffing the last received bit is inverted in shift (to prevent further
-; unstuffing calls. In the same time the corresponding bit in x5 is cleared to mark the bit as beening iverted
-; zl lower crc value and crc table index
-; zh used for crc table accesses
-
-;--------------------------------------------------------------------------------------------------------------
-; CRC mods:
-; table driven crc checker, Z points to table in prog space
-; ZL is the lower crc byte, x3 is the higher crc byte
-; x4 is used as temp register to store different results
-; the initialization of the crc register is not 0xFFFF but 0xFE54. This is because during the receipt of the
-; first data byte an virtual zero data byte is added to the crc register, this results in the correct initial
-; value of 0xFFFF at beginning of the second data byte before the first data byte is added to the crc.
-; The magic number 0xFE54 results form the crc table: At tabH[0x54] = 0xFF = crcH (required) and
-; tabL[0x54] = 0x01 -> crcL = 0x01 xor 0xFE = 0xFF
-; bitcnt is renamed to x5 and is used for unstuffing purposes, the unstuffing works like in the 12MHz version
-;--------------------------------------------------------------------------------------------------------------
-; CRC algorithm:
-; The crc register is formed by x3 (higher byte) and ZL (lower byte). The algorithm uses a 'reversed' form
-; i.e. that it takes the least significant bit first and shifts to the right. So in fact the highest order
-; bit seen from the polynomial devision point of view is the lsb of ZL. (If this sounds strange to you i
-; propose a research on CRC :-) )
-; Each data byte received is xored to ZL, the lower crc byte. This byte now builds the crc
-; table index. Next the new high byte is loaded from the table and stored in x4 until we have space in x3
-; (its destination).
-; Afterwards the lower table is loaded from the table and stored in ZL (the old index is overwritten as
-; we don't need it anymore. In fact this is a right shift by 8 bits.) Now the old crc high value is xored
-; to ZL, this is the second shift of the old crc value. Now x4 (the temp reg) is moved to x3 and the crc
-; calculation is done.
-; Prior to the first byte the two CRC register have to be initialized to 0xFFFF (as defined in usb spec)
-; however the crc engine also runs during the receipt of the first byte, therefore x3 and zl are initialized
-; to a magic number which results in a crc value of 0xFFFF after the first complete byte.
-;
-; This algorithm is split into the extra cycles of the different bits:
-; bit7: XOR the received byte to ZL
-; bit5: load the new high byte to x4
-; bit6: load the lower xor byte from the table, xor zl and x3, store result in zl (=the new crc low value)
-; move x4 (the new high byte) to x3, the crc value is ready
-;
-
-
-macro POP_STANDARD ; 18 cycles
- pop ZH
- pop ZL
- pop cnt
- pop x5
- pop x3
- pop x2
- pop x1
- pop shift
- pop x4
- endm
-macro POP_RETI ; 7 cycles
- pop YH
- pop YL
- out SREG, YL
- pop YL
- endm
-
-macro CRC_CLEANUP_AND_CHECK
- ; the last byte has already been xored with the lower crc byte, we have to do the table lookup and xor
- ; x3 is the higher crc byte, zl the lower one
- ldi ZH, hi8(usbCrcTableHigh);[+1] get the new high byte from the table
- lpm x2, Z ;[+2][+3][+4]
- ldi ZH, hi8(usbCrcTableLow);[+5] get the new low xor byte from the table
- lpm ZL, Z ;[+6][+7][+8]
- eor ZL, x3 ;[+7] xor the old high byte with the value from the table, x2:ZL now holds the crc value
- cpi ZL, 0x01 ;[+8] if the crc is ok we have a fixed remainder value of 0xb001 in x2:ZL (see usb spec)
- brne ignorePacket ;[+9] detected a crc fault -> paket is ignored and retransmitted by the host
- cpi x2, 0xb0 ;[+10]
- brne ignorePacket ;[+11] detected a crc fault -> paket is ignored and retransmitted by the host
- endm
-
-
-USB_INTR_VECTOR:
-;order of registers pushed: YL, SREG, YH, [sofError], x4, shift, x1, x2, x3, x5, cnt, ZL, ZH
- push YL ;[-28] push only what is necessary to sync with edge ASAP
- in YL, SREG ;[-26]
- push YL ;[-25]
- push YH ;[-23]
-;----------------------------------------------------------------------------
-; Synchronize with sync pattern:
-;----------------------------------------------------------------------------
-;sync byte (D-) pattern LSb to MSb: 01010100 [1 = idle = J, 0 = K]
-;sync up with J to K edge during sync pattern -- use fastest possible loops
-;The first part waits at most 1 bit long since we must be in sync pattern.
-;YL is guarenteed to be < 0x80 because I flag is clear. When we jump to
-;waitForJ, ensure that this prerequisite is met.
-waitForJ:
- inc YL
- sbis USBIN, USBMINUS
- brne waitForJ ; just make sure we have ANY timeout
-waitForK:
-;The following code results in a sampling window of < 1/4 bit which meets the spec.
- sbis USBIN, USBMINUS ;[-17]
- rjmp foundK ;[-16]
- sbis USBIN, USBMINUS
- rjmp foundK
- sbis USBIN, USBMINUS
- rjmp foundK
- sbis USBIN, USBMINUS
- rjmp foundK
- sbis USBIN, USBMINUS
- rjmp foundK
- sbis USBIN, USBMINUS
- rjmp foundK
- sbis USBIN, USBMINUS
- rjmp foundK
- sbis USBIN, USBMINUS
- rjmp foundK
- sbis USBIN, USBMINUS
- rjmp foundK
-#if USB_COUNT_SOF
- lds YL, usbSofCount
- inc YL
- sts usbSofCount, YL
-#endif /* USB_COUNT_SOF */
-#ifdef USB_SOF_HOOK
- USB_SOF_HOOK
-#endif
- rjmp sofError
-foundK: ;[-15]
-;{3, 5} after falling D- edge, average delay: 4 cycles
-;bit0 should be at 30 (2.5 bits) for center sampling. Currently at 4 so 26 cylces till bit 0 sample
-;use 1 bit time for setup purposes, then sample again. Numbers in brackets
-;are cycles from center of first sync (double K) bit after the instruction
- push x4 ;[-14]
-; [---] ;[-13]
- lds YL, usbInputBufOffset;[-12] used to toggle the two usb receive buffers
-; [---] ;[-11]
- clr YH ;[-10]
- subi YL, lo8(-(usbRxBuf));[-9] [rx loop init]
- sbci YH, hi8(-(usbRxBuf));[-8] [rx loop init]
- push shift ;[-7]
-; [---] ;[-6]
- ldi shift, 0x80 ;[-5] the last bit is the end of byte marker for the pid receiver loop
- clc ;[-4] the carry has to be clear for receipt of pid bit 0
- sbis USBIN, USBMINUS ;[-3] we want two bits K (sample 3 cycles too early)
- rjmp haveTwoBitsK ;[-2]
- pop shift ;[-1] undo the push from before
- pop x4 ;[1]
- rjmp waitForK ;[3] this was not the end of sync, retry
-; The entire loop from waitForK until rjmp waitForK above must not exceed two
-; bit times (= 24 cycles).
-
-;----------------------------------------------------------------------------
-; push more registers and initialize values while we sample the first bits:
-;----------------------------------------------------------------------------
-haveTwoBitsK:
- push x1 ;[0]
- push x2 ;[2]
- push x3 ;[4] crc high byte
- ldi x2, 1<<USBPLUS ;[6] [rx loop init] current line state is K state. D+=="1", D-=="0"
- push x5 ;[7]
- push cnt ;[9]
- ldi cnt, USB_BUFSIZE ;[11]
-
-
-;--------------------------------------------------------------------------------------------------------------
-; receives the pid byte
-; there is no real unstuffing algorithm implemented here as a stuffing bit is impossible in the pid byte.
-; That's because the last four bits of the byte are the inverted of the first four bits. If we detect a
-; unstuffing condition something went wrong and abort
-; shift has to be initialized to 0x80
-;--------------------------------------------------------------------------------------------------------------
-
-; pid bit 0 - used for even more register saving (we need the z pointer)
- in x1, USBIN ;[0] sample line state
- andi x1, USBMASK ;[1] filter only D+ and D- bits
- eor x2, x1 ;[2] generate inverted of actual bit
- sbrc x2, USBMINUS ;[3] if the bit is set we received a zero
- sec ;[4]
- ror shift ;[5] we perform no unstuffing check here as this is the first bit
- mov x2, x1 ;[6]
- push ZL ;[7]
- ;[8]
- push ZH ;[9]
- ;[10]
- ldi x3, 0xFE ;[11] x3 is the high order crc value
-
-
-bitloopPid:
- in x1, USBIN ;[0] sample line state
- andi x1, USBMASK ;[1] filter only D+ and D- bits
- breq nse0 ;[2] both lines are low so handle se0
- eor x2, x1 ;[3] generate inverted of actual bit
- sbrc x2, USBMINUS ;[4] set the carry if we received a zero
- sec ;[5]
- ror shift ;[6]
- ldi ZL, 0x54 ;[7] ZL is the low order crc value
- ser x4 ;[8] the is no bit stuffing check here as the pid bit can't be stuffed. if so
- ; some error occured. In this case the paket is discarded later on anyway.
- mov x2, x1 ;[9] prepare for the next cycle
- brcc bitloopPid ;[10] while 0s drop out of shift we get the next bit
- eor x4, shift ;[11] invert all bits in shift and store result in x4
-
-;--------------------------------------------------------------------------------------------------------------
-; receives data bytes and calculates the crc
-; the last USBIN state has to be in x2
-; this is only the first half, due to branch distanc limitations the second half of the loop is near the end
-; of this asm file
-;--------------------------------------------------------------------------------------------------------------
-
-rxDataStart:
- in x1, USBIN ;[0] sample line state (note: a se0 check is not useful due to bit dribbling)
- ser x5 ;[1] prepare the unstuff marker register
- eor x2, x1 ;[2] generates the inverted of the actual bit
- bst x2, USBMINUS ;[3] copy the bit from x2
- bld shift, 0 ;[4] and store it in shift
- mov x2, shift ;[5] make a copy of shift for unstuffing check
- andi x2, 0xF9 ;[6] mask the last six bits, if we got six zeros (which are six ones in fact)
- breq unstuff0 ;[7] then Z is set now and we branch to the unstuffing handler
-didunstuff0:
- subi cnt, 1 ;[8] cannot use dec because it doesn't affect the carry flag
- brcs nOverflow ;[9] Too many bytes received. Ignore packet
- st Y+, x4 ;[10] store the last received byte
- ;[11] st needs two cycles
-
-; bit1
- in x2, USBIN ;[0] sample line state
- andi x1, USBMASK ;[1] check for se0 during bit 0
- breq nse0 ;[2]
- andi x2, USBMASK ;[3] check se0 during bit 1
- breq nse0 ;[4]
- eor x1, x2 ;[5]
- bst x1, USBMINUS ;[6]
- bld shift, 1 ;[7]
- mov x1, shift ;[8]
- andi x1, 0xF3 ;[9]
- breq unstuff1 ;[10]
-didunstuff1:
- nop ;[11]
-
-; bit2
- in x1, USBIN ;[0] sample line state
- andi x1, USBMASK ;[1] check for se0 (as there is nothing else to do here
- breq nOverflow ;[2]
- eor x2, x1 ;[3] generates the inverted of the actual bit
- bst x2, USBMINUS ;[4]
- bld shift, 2 ;[5] store the bit
- mov x2, shift ;[6]
- andi x2, 0xE7 ;[7] if we have six zeros here (which means six 1 in the stream)
- breq unstuff2 ;[8] the next bit is a stuffing bit
-didunstuff2:
- nop2 ;[9]
- ;[10]
- nop ;[11]
-
-; bit3
- in x2, USBIN ;[0] sample line state
- andi x2, USBMASK ;[1] check for se0
- breq nOverflow ;[2]
- eor x1, x2 ;[3]
- bst x1, USBMINUS ;[4]
- bld shift, 3 ;[5]
- mov x1, shift ;[6]
- andi x1, 0xCF ;[7]
- breq unstuff3 ;[8]
-didunstuff3:
- nop ;[9]
- rjmp rxDataBit4 ;[10]
- ;[11]
-
-; the avr branch instructions allow an offset of +63 insturction only, so we need this
-; 'local copy' of se0
-nse0:
- rjmp se0 ;[4]
- ;[5]
-; the same same as for se0 is needed for overflow and StuffErr
-nOverflow:
-stuffErr:
- rjmp overflow
-
-
-unstuff0: ;[8] this is the branch delay of breq unstuffX
- andi x1, USBMASK ;[9] do an se0 check here (if the last crc byte ends with 5 one's we might end up here
- breq didunstuff0 ;[10] event tough the message is complete -> jump back and store the byte
- ori shift, 0x01 ;[11] invert the last received bit to prevent furhter unstuffing
- in x2, USBIN ;[0] we have some free cycles so we could check for bit stuffing errors
- andi x5, 0xFE ;[1] mark this bit as inverted (will be corrected before storing shift)
- eor x1, x2 ;[2] x1 and x2 have to be different because the stuff bit is always a zero
- andi x1, USBMASK ;[3] mask the interesting bits
- breq stuffErr ;[4] if the stuff bit is a 1-bit something went wrong
- mov x1, x2 ;[5] the next bit expects the last state to be in x1
- rjmp didunstuff0 ;[6]
- ;[7] jump delay of rjmp didunstuffX
-
-unstuff1: ;[11] this is the jump delay of breq unstuffX
- in x1, USBIN ;[0] we have some free cycles so we could check for bit stuffing errors
- ori shift, 0x02 ;[1] invert the last received bit to prevent furhter unstuffing
- andi x5, 0xFD ;[2] mark this bit as inverted (will be corrected before storing shift)
- eor x2, x1 ;[3] x1 and x2 have to be different because the stuff bit is always a zero
- andi x2, USBMASK ;[4] mask the interesting bits
- breq stuffErr ;[5] if the stuff bit is a 1-bit something went wrong
- mov x2, x1 ;[6] the next bit expects the last state to be in x2
- nop2 ;[7]
- ;[8]
- rjmp didunstuff1 ;[9]
- ;[10] jump delay of rjmp didunstuffX
-
-unstuff2: ;[9] this is the jump delay of breq unstuffX
- ori shift, 0x04 ;[10] invert the last received bit to prevent furhter unstuffing
- andi x5, 0xFB ;[11] mark this bit as inverted (will be corrected before storing shift)
- in x2, USBIN ;[0] we have some free cycles so we could check for bit stuffing errors
- eor x1, x2 ;[1] x1 and x2 have to be different because the stuff bit is always a zero
- andi x1, USBMASK ;[2] mask the interesting bits
- breq stuffErr ;[3] if the stuff bit is a 1-bit something went wrong
- mov x1, x2 ;[4] the next bit expects the last state to be in x1
- nop2 ;[5]
- ;[6]
- rjmp didunstuff2 ;[7]
- ;[8] jump delay of rjmp didunstuffX
-
-unstuff3: ;[9] this is the jump delay of breq unstuffX
- ori shift, 0x08 ;[10] invert the last received bit to prevent furhter unstuffing
- andi x5, 0xF7 ;[11] mark this bit as inverted (will be corrected before storing shift)
- in x1, USBIN ;[0] we have some free cycles so we could check for bit stuffing errors
- eor x2, x1 ;[1] x1 and x2 have to be different because the stuff bit is always a zero
- andi x2, USBMASK ;[2] mask the interesting bits
- breq stuffErr ;[3] if the stuff bit is a 1-bit something went wrong
- mov x2, x1 ;[4] the next bit expects the last state to be in x2
- nop2 ;[5]
- ;[6]
- rjmp didunstuff3 ;[7]
- ;[8] jump delay of rjmp didunstuffX
-
-
-
-; the include has to be here due to branch distance restirctions
-#define __USE_CRC__
-#include "asmcommon.inc"
-
-
-
-; USB spec says:
-; idle = J
-; J = (D+ = 0), (D- = 1)
-; K = (D+ = 1), (D- = 0)
-; Spec allows 7.5 bit times from EOP to SOP for replies
-; 7.5 bit times is 90 cycles. ...there is plenty of time
-
-
-sendNakAndReti:
- ldi x3, USBPID_NAK ;[-18]
- rjmp sendX3AndReti ;[-17]
-sendAckAndReti:
- ldi cnt, USBPID_ACK ;[-17]
-sendCntAndReti:
- mov x3, cnt ;[-16]
-sendX3AndReti:
- ldi YL, 20 ;[-15] x3==r20 address is 20
- ldi YH, 0 ;[-14]
- ldi cnt, 2 ;[-13]
-; rjmp usbSendAndReti fallthrough
-
-;usbSend:
-;pointer to data in 'Y'
-;number of bytes in 'cnt' -- including sync byte [range 2 ... 12]
-;uses: x1...x4, btcnt, shift, cnt, Y
-;Numbers in brackets are time since first bit of sync pattern is sent
-
-usbSendAndReti: ; 12 cycles until SOP
- in x2, USBDDR ;[-12]
- ori x2, USBMASK ;[-11]
- sbi USBOUT, USBMINUS;[-10] prepare idle state; D+ and D- must have been 0 (no pullups)
- in x1, USBOUT ;[-8] port mirror for tx loop
- out USBDDR, x2 ;[-6] <- acquire bus
- ldi x2, 0 ;[-6] init x2 (bitstuff history) because sync starts with 0
- ldi x4, USBMASK ;[-5] exor mask
- ldi shift, 0x80 ;[-4] sync byte is first byte sent
-txByteLoop:
- ldi bitcnt, 0x40 ;[-3]=[9] binary 01000000
-txBitLoop: ; the loop sends the first 7 bits of the byte
- sbrs shift, 0 ;[-2]=[10] if we have to send a 1 don't change the line state
- eor x1, x4 ;[-1]=[11]
- out USBOUT, x1 ;[0]
- ror shift ;[1]
- ror x2 ;[2] transfers the last sent bit to the stuffing history
-didStuffN:
- nop ;[3]
- nop ;[4]
- cpi x2, 0xfc ;[5] if we sent six consecutive ones
- brcc bitstuffN ;[6]
- lsr bitcnt ;[7]
- brne txBitLoop ;[8] restart the loop while the 1 is still in the bitcount
-
-; transmit bit 7
- sbrs shift, 0 ;[9]
- eor x1, x4 ;[10]
-didStuff7:
- ror shift ;[11]
- out USBOUT, x1 ;[0] transfer bit 7 to the pins
- ror x2 ;[1] move the bit into the stuffing history
- cpi x2, 0xfc ;[2]
- brcc bitstuff7 ;[3]
- ld shift, y+ ;[4] get next byte to transmit
- dec cnt ;[5] decrement byte counter
- brne txByteLoop ;[7] if we have more bytes start next one
- ;[8] branch delay
-
-;make SE0:
- cbr x1, USBMASK ;[8] prepare SE0 [spec says EOP may be 25 to 30 cycles]
- lds x2, usbNewDeviceAddr;[9]
- lsl x2 ;[11] we compare with left shifted address
- out USBOUT, x1 ;[0] <-- out SE0 -- from now 2 bits = 24 cycles until bus idle
- subi YL, 20 + 2 ;[1] Only assign address on data packets, not ACK/NAK in x3
- sbci YH, 0 ;[2]
-;2006-03-06: moved transfer of new address to usbDeviceAddr from C-Code to asm:
-;set address only after data packet was sent, not after handshake
- breq skipAddrAssign ;[3]
- sts usbDeviceAddr, x2 ; if not skipped: SE0 is one cycle longer
-skipAddrAssign:
-;end of usbDeviceAddress transfer
- ldi x2, 1<<USB_INTR_PENDING_BIT;[5] int0 occurred during TX -- clear pending flag
- USB_STORE_PENDING(x2) ;[6]
- ori x1, USBIDLE ;[7]
- in x2, USBDDR ;[8]
- cbr x2, USBMASK ;[9] set both pins to input
- mov x3, x1 ;[10]
- cbr x3, USBMASK ;[11] configure no pullup on both pins
- ldi x4, 4 ;[12]
-se0Delay:
- dec x4 ;[13] [16] [19] [22]
- brne se0Delay ;[14] [17] [20] [23]
- out USBOUT, x1 ;[24] <-- out J (idle) -- end of SE0 (EOP signal)
- out USBDDR, x2 ;[25] <-- release bus now
- out USBOUT, x3 ;[26] <-- ensure no pull-up resistors are active
- rjmp doReturn
-
-bitstuffN:
- eor x1, x4 ;[8] generate a zero
- ldi x2, 0 ;[9] reset the bit stuffing history
- nop2 ;[10]
- out USBOUT, x1 ;[0] <-- send the stuffing bit
- rjmp didStuffN ;[1]
-
-bitstuff7:
- eor x1, x4 ;[5]
- ldi x2, 0 ;[6] reset bit stuffing history
- clc ;[7] fill a zero into the shift register
- rol shift ;[8] compensate for ror shift at branch destination
- rjmp didStuff7 ;[9]
- ;[10] jump delay
-
-;--------------------------------------------------------------------------------------------------------------
-; receives data bytes and calculates the crc
-; second half of the data byte receiver loop
-; most parts of the crc algorithm are here
-;--------------------------------------------------------------------------------------------------------------
-
-nOverflow2:
- rjmp overflow
-
-rxDataBit4:
- in x1, USBIN ;[0] sample line state
- andi x1, USBMASK ;[1] check for se0
- breq nOverflow2 ;[2]
- eor x2, x1 ;[3]
- bst x2, USBMINUS ;[4]
- bld shift, 4 ;[5]
- mov x2, shift ;[6]
- andi x2, 0x9F ;[7]
- breq unstuff4 ;[8]
-didunstuff4:
- nop2 ;[9][10]
- nop ;[11]
-
-; bit5
- in x2, USBIN ;[0] sample line state
- ldi ZH, hi8(usbCrcTableHigh);[1] use the table for the higher byte
- eor x1, x2 ;[2]
- bst x1, USBMINUS ;[3]
- bld shift, 5 ;[4]
- mov x1, shift ;[5]
- andi x1, 0x3F ;[6]
- breq unstuff5 ;[7]
-didunstuff5:
- lpm x4, Z ;[8] load the higher crc xor-byte and store it for later use
- ;[9] lpm needs 3 cycles
- ;[10]
- ldi ZH, hi8(usbCrcTableLow);[11] load the lower crc xor byte adress
-
-; bit6
- in x1, USBIN ;[0] sample line state
- eor x2, x1 ;[1]
- bst x2, USBMINUS ;[2]
- bld shift, 6 ;[3]
- mov x2, shift ;[4]
- andi x2, 0x7E ;[5]
- breq unstuff6 ;[6]
-didunstuff6:
- lpm ZL, Z ;[7] load the lower xor crc byte
- ;[8] lpm needs 3 cycles
- ;[9]
- eor ZL, x3 ;[10] xor the old high crc byte with the low xor-byte
- mov x3, x4 ;[11] move the new high order crc value from temp to its destination
-
-; bit7
- in x2, USBIN ;[0] sample line state
- eor x1, x2 ;[1]
- bst x1, USBMINUS ;[2]
- bld shift, 7 ;[3] now shift holds the complete but inverted data byte
- mov x1, shift ;[4]
- andi x1, 0xFC ;[5]
- breq unstuff7 ;[6]
-didunstuff7:
- eor x5, shift ;[7] x5 marks all bits which have not been inverted by the unstuffing subs
- mov x4, x5 ;[8] keep a copy of the data byte it will be stored during next bit0
- eor ZL, x4 ;[9] feed the actual byte into the crc algorithm
- rjmp rxDataStart ;[10] next byte
- ;[11] during the reception of the next byte this one will be fed int the crc algorithm
-
-unstuff4: ;[9] this is the jump delay of rjmp unstuffX
- ori shift, 0x10 ;[10] invert the last received bit to prevent furhter unstuffing
- andi x5, 0xEF ;[11] mark this bit as inverted (will be corrected before storing shift)
- in x2, USBIN ;[0] we have some free cycles so we could check for bit stuffing errors
- eor x1, x2 ;[1] x1 and x2 have to be different because the stuff bit is always a zero
- andi x1, USBMASK ;[2] mask the interesting bits
- breq stuffErr2 ;[3] if the stuff bit is a 1-bit something went wrong
- mov x1, x2 ;[4] the next bit expects the last state to be in x1
- nop2 ;[5]
- ;[6]
- rjmp didunstuff4 ;[7]
- ;[8] jump delay of rjmp didunstuffX
-
-unstuff5: ;[8] this is the jump delay of rjmp unstuffX
- nop ;[9]
- ori shift, 0x20 ;[10] invert the last received bit to prevent furhter unstuffing
- andi x5, 0xDF ;[11] mark this bit as inverted (will be corrected before storing shift)
- in x1, USBIN ;[0] we have some free cycles so we could check for bit stuffing errors
- eor x2, x1 ;[1] x1 and x2 have to be different because the stuff bit is always a zero
- andi x2, USBMASK ;[2] mask the interesting bits
- breq stuffErr2 ;[3] if the stuff bit is a 1-bit something went wrong
- mov x2, x1 ;[4] the next bit expects the last state to be in x2
- nop ;[5]
- rjmp didunstuff5 ;[6]
- ;[7] jump delay of rjmp didunstuffX
-
-unstuff6: ;[7] this is the jump delay of rjmp unstuffX
- nop2 ;[8]
- ;[9]
- ori shift, 0x40 ;[10] invert the last received bit to prevent furhter unstuffing
- andi x5, 0xBF ;[11] mark this bit as inverted (will be corrected before storing shift)
- in x2, USBIN ;[0] we have some free cycles so we could check for bit stuffing errors
- eor x1, x2 ;[1] x1 and x2 have to be different because the stuff bit is always a zero
- andi x1, USBMASK ;[2] mask the interesting bits
- breq stuffErr2 ;[3] if the stuff bit is a 1-bit something went wrong
- mov x1, x2 ;[4] the next bit expects the last state to be in x1
- rjmp didunstuff6 ;[5]
- ;[6] jump delay of rjmp didunstuffX
-
-unstuff7: ;[7] this is the jump delay of rjmp unstuffX
- nop ;[8]
- nop ;[9]
- ori shift, 0x80 ;[10] invert the last received bit to prevent furhter unstuffing
- andi x5, 0x7F ;[11] mark this bit as inverted (will be corrected before storing shift)
- in x1, USBIN ;[0] we have some free cycles so we could check for bit stuffing errors
- eor x2, x1 ;[1] x1 and x2 have to be different because the stuff bit is always a zero
- andi x2, USBMASK ;[2] mask the interesting bits
- breq stuffErr2 ;[3] if the stuff bit is a 1-bit something went wrong
- mov x2, x1 ;[4] the next bit expects the last state to be in x2
- rjmp didunstuff7 ;[5]
- ;[6] jump delay of rjmp didunstuff7
-
-; local copy of the stuffErr desitnation for the second half of the receiver loop
-stuffErr2:
- rjmp stuffErr
-
-;--------------------------------------------------------------------------------------------------------------
-; The crc table follows. It has to be aligned to enable a fast loading of the needed bytes.
-; There are two tables of 256 entries each, the low and the high byte table.
-; Table values were generated with the following C code:
-/*
-#include <stdio.h>
-int main (int argc, char **argv)
-{
- int i, j;
- for (i=0; i<512; i++){
- unsigned short crc = i & 0xff;
- for(j=0; j<8; j++) crc = (crc >> 1) ^ ((crc & 1) ? 0xa001 : 0);
- if((i & 7) == 0) printf("\n.byte ");
- printf("0x%02x, ", (i > 0xff ? (crc >> 8) : crc) & 0xff);
- if(i == 255) printf("\n");
- }
- return 0;
-}
-
-// Use the following algorithm to compute CRC values:
-ushort computeCrc(uchar *msg, uchar msgLen)
-{
- uchar i;
- ushort crc = 0xffff;
- for(i = 0; i < msgLen; i++)
- crc = usbCrcTable16[lo8(crc) ^ msg[i]] ^ hi8(crc);
- return crc;
-}
-*/
-
-.balign 256
-usbCrcTableLow:
-.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
-.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
-.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
-.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
-.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
-.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
-.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
-.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
-.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
-.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
-.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
-.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
-.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
-.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
-.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
-.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
-.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
-.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
-.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
-.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
-.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
-.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
-.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
-.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
-.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
-.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
-.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
-.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
-.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
-.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
-.byte 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41
-.byte 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40
-
-; .balign 256
-usbCrcTableHigh:
-.byte 0x00, 0xC0, 0xC1, 0x01, 0xC3, 0x03, 0x02, 0xC2
-.byte 0xC6, 0x06, 0x07, 0xC7, 0x05, 0xC5, 0xC4, 0x04
-.byte 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E
-.byte 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8
-.byte 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A
-.byte 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC
-.byte 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6
-.byte 0xD2, 0x12, 0x13, 0xD3, 0x11, 0xD1, 0xD0, 0x10
-.byte 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32
-.byte 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4
-.byte 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE
-.byte 0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38
-.byte 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA
-.byte 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C
-.byte 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26
-.byte 0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0
-.byte 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62
-.byte 0x66, 0xA6, 0xA7, 0x67, 0xA5, 0x65, 0x64, 0xA4
-.byte 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE
-.byte 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68
-.byte 0x78, 0xB8, 0xB9, 0x79, 0xBB, 0x7B, 0x7A, 0xBA
-.byte 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C
-.byte 0xB4, 0x74, 0x75, 0xB5, 0x77, 0xB7, 0xB6, 0x76
-.byte 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0
-.byte 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92
-.byte 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54
-.byte 0x9C, 0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E
-.byte 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98
-.byte 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A
-.byte 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C
-.byte 0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86
-.byte 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80, 0x40
-