/* Library made by: g4lvanix * Github repository: https://github.com/g4lvanix/I2C-master-lib */ #include #include #include "i2c_master.h" #include "timer.h" #ifndef F_SCL #define F_SCL 400000UL // SCL frequency #endif #define Prescaler 1 #define TWBR_val ((((F_CPU / F_SCL) / Prescaler) - 16 ) / 2) void i2c_init(void) { TWSR = 0; /* no prescaler */ TWBR = (uint8_t)TWBR_val; } i2c_status_t i2c_start(uint8_t address, uint16_t timeout) { // reset TWI control register TWCR = 0; // transmit START condition TWCR = (1<= timeout)) { return I2C_STATUS_TIMEOUT; } } // check if the start condition was successfully transmitted if(((TW_STATUS & 0xF8) != TW_START) && ((TW_STATUS & 0xF8) != TW_REP_START)){ return I2C_STATUS_ERROR; } // load slave address into data register TWDR = address; // start transmission of address TWCR = (1<= timeout)) { return I2C_STATUS_TIMEOUT; } } // check if the device has acknowledged the READ / WRITE mode uint8_t twst = TW_STATUS & 0xF8; if ( (twst != TW_MT_SLA_ACK) && (twst != TW_MR_SLA_ACK) ) return I2C_STATUS_ERROR; return I2C_STATUS_SUCCESS; } i2c_status_t i2c_write(uint8_t data, uint16_t timeout) { // load data into data register TWDR = data; // start transmission of data TWCR = (1<= timeout)) { return I2C_STATUS_TIMEOUT; } } if( (TW_STATUS & 0xF8) != TW_MT_DATA_ACK ){ return I2C_STATUS_ERROR; } return I2C_STATUS_SUCCESS; } int16_t i2c_read_ack(uint16_t timeout) { // start TWI module and acknowledge data after reception TWCR = (1<= timeout)) { return I2C_STATUS_TIMEOUT; } } // return received data from TWDR return TWDR; } int16_t i2c_read_nack(uint16_t timeout) { // start receiving without acknowledging reception TWCR = (1<= timeout)) { return I2C_STATUS_TIMEOUT; } } // return received data from TWDR return TWDR; } i2c_status_t i2c_transmit(uint8_t address, uint8_t* data, uint16_t length, uint16_t timeout) { i2c_status_t status = i2c_start(address | I2C_WRITE, timeout); if (status) return status; for (uint16_t i = 0; i < length; i++) { status = i2c_write(data[i], timeout); if (status) return status; } status = i2c_stop(timeout); if (status) return status; return I2C_STATUS_SUCCESS; } i2c_status_t i2c_receive(uint8_t address, uint8_t* data, uint16_t length, uint16_t timeout) { i2c_status_t status = i2c_start(address | I2C_READ, timeout); if (status) return status; for (uint16_t i = 0; i < (length-1); i++) { status = i2c_read_ack(timeout); if (status >= 0) { data[i] = status; } else { return status; } } status = i2c_read_nack(timeout); if (status >= 0 ) { data[(length-1)] = status; } else { return status; } status = i2c_stop(timeout); if (status) return status; return I2C_STATUS_SUCCESS; } i2c_status_t i2c_writeReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout) { i2c_status_t status = i2c_start(devaddr | 0x00, timeout); if (status) return status; status = i2c_write(regaddr, timeout); if (status) return status; for (uint16_t i = 0; i < length; i++) { status = i2c_write(data[i], timeout); if (status) return status; } status = i2c_stop(timeout); if (status) return status; return I2C_STATUS_SUCCESS; } i2c_status_t i2c_readReg(uint8_t devaddr, uint8_t regaddr, uint8_t* data, uint16_t length, uint16_t timeout) { i2c_status_t status = i2c_start(devaddr, timeout); if (status) return status; status = i2c_write(regaddr, timeout); if (status) return status; status = i2c_stop(timeout); if (status) return status; status = i2c_start(devaddr | 0x01, timeout); if (status) return status; for (uint16_t i = 0; i < (length-1); i++) { status = i2c_read_ack(timeout); if (status >= 0) { data[i] = status; } else { return status; } } status = i2c_read_nack(timeout); if (status >= 0 ) { data[(length-1)] = status; } else { return status; } status = i2c_stop(timeout); if (status) return status; return I2C_STATUS_SUCCESS; } i2c_status_t i2c_stop(uint16_t timeout) { // transmit STOP condition TWCR = (1<= timeout)) { return I2C_STATUS_TIMEOUT; } } return I2C_STATUS_SUCCESS; }