/* Copyright 2012 Jun Wako This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * scan matrix */ #include #include #include #include "wait.h" #include "print.h" #include "debug.h" #include "util.h" #include "matrix.h" #include "split_util.h" #include "pro_micro.h" #include "config.h" #include "timer.h" #ifdef DEBUG_MATRIX_SCAN_RATE #include "matrix_scanrate.h" #endif #ifdef USE_I2C # include "i2c.h" #else // USE_SERIAL # error "only i2c supported" #endif #ifndef DEBOUNCING_DELAY # define DEBOUNCING_DELAY 5 #endif #if (MATRIX_COLS <= 8) # define print_matrix_header() print("\nr/c 01234567\n") # define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row)) # define matrix_bitpop(i) bitpop(matrix[i]) # define ROW_SHIFTER ((uint8_t)1) #else # error "Currently only supports 8 COLS" #endif #define ERROR_DISCONNECT_COUNT 5 #define ROWS_PER_HAND (MATRIX_ROWS/2) static uint8_t error_count = 0; static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS; static const uint8_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS; /* matrix state(1:on, 0:off) */ static matrix_row_t matrix[MATRIX_ROWS]; static matrix_row_t matrix_debouncing[MATRIX_ROWS]; static matrix_row_t* debouncing_matrix_hand_offsetted; //pointer to matrix_debouncing for our hand static matrix_row_t* matrix_hand_offsetted; // pointer to matrix for our hand //Debouncing counters typedef uint8_t debounce_counter_t; #define DEBOUNCE_COUNTER_MODULO 250 #define DEBOUNCE_COUNTER_INACTIVE 251 static debounce_counter_t debounce_counters[MATRIX_ROWS * MATRIX_COLS]; static debounce_counter_t *debounce_counters_hand_offsetted; #if (DIODE_DIRECTION == ROW2COL) error "Only Col2Row supported"; #endif static void init_cols(void); static void unselect_rows(void); static void select_row(uint8_t row); static void unselect_row(uint8_t row); static matrix_row_t optimized_col_reader(void); __attribute__ ((weak)) void matrix_init_kb(void) { matrix_init_user(); } __attribute__ ((weak)) void matrix_scan_kb(void) { matrix_scan_user(); } __attribute__ ((weak)) void matrix_init_user(void) { } __attribute__ ((weak)) void matrix_scan_user(void) { } __attribute__ ((weak)) void matrix_slave_scan_user(void) { } inline uint8_t matrix_rows(void) { return MATRIX_ROWS; } inline uint8_t matrix_cols(void) { return MATRIX_COLS; } void matrix_init(void) { #ifdef DISABLE_JTAG // JTAG disable for PORT F. write JTD bit twice within four cycles. MCUCR |= (1<= (b) ? (a) - (b) : (max) - (b) + (a)) void update_debounce_counters(uint8_t current_time) { debounce_counter_t *debounce_pointer = debounce_counters_hand_offsetted; for (uint8_t row = 0; row < ROWS_PER_HAND; row++) { for (uint8_t col = 0; col < MATRIX_COLS; col++) { if (*debounce_pointer != DEBOUNCE_COUNTER_INACTIVE) { if (TIMER_DIFF(current_time, *debounce_pointer, DEBOUNCE_COUNTER_MODULO) >= DEBOUNCING_DELAY) { *debounce_pointer = DEBOUNCE_COUNTER_INACTIVE; } } debounce_pointer++; } } } void transfer_matrix_values(uint8_t current_time) { //upload from debounce_matrix to final matrix; debounce_counter_t *debounce_pointer = debounce_counters_hand_offsetted; for (uint8_t row = 0; row < ROWS_PER_HAND; row++) { matrix_row_t row_value = matrix_hand_offsetted[row]; matrix_row_t debounce_value = debouncing_matrix_hand_offsetted[row]; for (uint8_t col = 0; col < MATRIX_COLS; col++) { bool final_value = debounce_value & (1 << col); bool current_value = row_value & (1 << col); if (*debounce_pointer == DEBOUNCE_COUNTER_INACTIVE && (current_value != final_value)) { *debounce_pointer = current_time; row_value ^= (1 << col); } debounce_pointer++; } matrix_hand_offsetted[row] = row_value; } } uint8_t _matrix_scan(void) { uint8_t current_time = timer_read() % DEBOUNCE_COUNTER_MODULO; // Set row, read cols for (uint8_t current_row = 0; current_row < ROWS_PER_HAND; current_row++) { select_row(current_row); asm volatile ("nop"); asm volatile("nop"); debouncing_matrix_hand_offsetted[current_row] = optimized_col_reader(); // Unselect row unselect_row(current_row); } update_debounce_counters(current_time); transfer_matrix_values(current_time); return 1; } // Get rows from other half over i2c int i2c_transaction(void) { int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0; int err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE); if (err) goto i2c_error; // start of matrix stored at 0x00 err = i2c_master_write(I2C_KEYMAP_START); if (err) goto i2c_error; // Start read err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_READ); if (err) goto i2c_error; if (!err) { int i; for (i = 0; i < ROWS_PER_HAND-1; ++i) { matrix[slaveOffset+i] = i2c_master_read(I2C_ACK); } matrix[slaveOffset+i] = i2c_master_read(I2C_NACK); i2c_master_stop(); } else { i2c_error: // the cable is disconnceted, or something else went wrong i2c_reset_state(); return err; } return 0; } uint8_t matrix_scan(void) { #ifdef DEBUG_MATRIX_SCAN_RATE matrix_check_scan_rate(); matrix_time_between_scans(); #endif uint8_t ret = _matrix_scan(); if( i2c_transaction() ) { // turn on the indicator led when halves are disconnected TXLED1; error_count++; if (error_count > ERROR_DISCONNECT_COUNT) { // reset other half if disconnected int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0; for (int i = 0; i < ROWS_PER_HAND; ++i) { matrix[slaveOffset+i] = 0; } } } else { // turn off the indicator led on no error TXLED0; error_count = 0; } matrix_scan_quantum(); return ret; } void matrix_slave_scan(void) { _matrix_scan(); int offset = (isLeftHand) ? 0 : ROWS_PER_HAND; for (int i = 0; i < ROWS_PER_HAND; ++i) { i2c_slave_buffer[I2C_KEYMAP_START+i] = matrix[offset+i]; } matrix_slave_scan_user(); } inline bool matrix_is_on(uint8_t row, uint8_t col) { return (matrix[row] & ((matrix_row_t)1<> 4) + 1) &= ~_BV(pin & 0xF); // IN _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI } } inline static matrix_row_t optimized_col_reader(void) { //MATRIX_COL_PINS { B6, B2, B3, B1, F7, F6, F5, F4 } return (PINB & (1 << 6) ? 0 : (ROW_SHIFTER << 0)) | (PINB & (1 << 2) ? 0 : (ROW_SHIFTER << 1)) | (PINB & (1 << 3) ? 0 : (ROW_SHIFTER << 2)) | (PINB & (1 << 1) ? 0 : (ROW_SHIFTER << 3)) | (PINF & (1 << 7) ? 0 : (ROW_SHIFTER << 4)) | (PINF & (1 << 6) ? 0 : (ROW_SHIFTER << 5)) | (PINF & (1 << 5) ? 0 : (ROW_SHIFTER << 6)) | (PINF & (1 << 4) ? 0 : (ROW_SHIFTER << 7)); } static void select_row(uint8_t row) { uint8_t pin = row_pins[row]; _SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT _SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW } static void unselect_row(uint8_t row) { uint8_t pin = row_pins[row]; _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI } static void unselect_rows(void) { for(uint8_t x = 0; x < ROWS_PER_HAND; x++) { uint8_t pin = row_pins[x]; _SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN _SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI } }