#include QMK_KEYBOARD_H enum mitosis_layers { _xQ, // qwerty _xW, // workman _xS, // symbols _xN, // numbers _xF // functions }; // Fillers to make layering more clear #define XXXXXXX KC_NO // No-op (no key in this location on Mitosis' fake matrix) #define _______ KC_TRNS // Transparent, because I haven't decided a mapping yet #define KC_LMTA KC_LALT // For fun, name the mods like the space cadet keyboard does #define KC_RMTA KC_RALT // META #define KC_LSUP KC_LGUI // SUPER #define KC_RSUP KC_RGUI // #define KC_RHYP KC_INT4 // HYPER (actually muhenkan 無変換 and henkan 変換) #define KC_LHYP KC_INT5 // or NFER/XFER. // Momentary tri-state layers. Mitosis default keymap does this too but employs // new keymappings and a bunch of conditional code. This simpler keymap // accomplishes it, but with a small quirk: triggering both layers then // releasing one out-of-order will leave the tri-state triggered until the // other is released. Which doesn't bother me. const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = { [_xQ] = LAYOUT( KC_Q, KC_W, KC_E, KC_R, KC_T, KC_Y, KC_U, KC_I, KC_O, KC_P, KC_A, KC_S, KC_D, KC_F, KC_G, KC_H, KC_J, KC_K, KC_L, KC_SCLN, KC_Z, KC_X, KC_C, KC_V, KC_B, KC_N, KC_M, KC_COMM, KC_DOT, KC_QUOT, KC_LSUP, KC_LCTL, MO(_xN), SFT_T(KC_TAB), KC_RSFT, MO(_xN), KC_RCTL, KC_RSUP, KC_LHYP, KC_LMTA, MO(_xS), KC_BSPC, KC_SPC, MO(_xS), KC_RMTA, KC_RHYP ), [_xW] = LAYOUT( KC_Q, KC_D, KC_R, KC_W, KC_B, KC_J, KC_F, KC_U, KC_P, KC_SCLN, KC_A, KC_S, KC_H, KC_T, KC_G, KC_Y, KC_N, KC_E, KC_O, KC_I, KC_Z, KC_X, KC_M, KC_C, KC_V, KC_K, KC_L, KC_COMM, KC_DOT, KC_QUOT, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______ ), [_xS] = LAYOUT( KC_ESC, _______, KC_UP, _______, _______, KC_AT, KC_HASH, KC_DLR, KC_PERC, KC_TILD, KC_TAB, KC_LEFT, KC_DOWN, KC_RGHT, _______, KC_CIRC, KC_AMPR, KC_PIPE, KC_GRV, KC_UNDS, KC_BSLS, KC_RPRN, KC_RCBR, KC_RBRC, KC_RABK, KC_LABK, KC_LBRC, KC_LCBR, KC_LPRN, KC_SLSH, _______, _______, MO(_xF), _______, _______, MO(_xF), _______, _______, _______, _______, _______, KC_DEL, KC_ENT, _______, _______, _______ ), [_xN] = LAYOUT( _______, _______, _______, _______, KC_NLCK, KC_PSLS, KC_P7, KC_P8, KC_P9, KC_P0, _______, _______, _______, _______, _______, KC_PAST, KC_P4, KC_P5, KC_P6, KC_PPLS, _______, _______, _______, _______, _______, KC_PMNS, KC_P1, KC_P2, KC_P3, KC_PEQL, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, MO(_xF), _______, KC_PENT, MO(_xF), _______, _______ ), [_xF] = LAYOUT( _______, _______, KC_PGUP, _______, KC_VOLU, KC_F13, KC_F7, KC_F8, KC_F9, KC_F10, _______, KC_HOME, KC_PGDN, KC_END, KC_VOLD, KC_F14, KC_F4, KC_F5, KC_F6, KC_F11, TG(_xW), KC_MPRV, KC_MPLY, KC_MNXT, KC_MUTE, KC_F15, KC_F1, KC_F2, KC_F3, KC_F12, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______ ), }; // This is a hack to place on and on , when using an operating system configured for a // US/qwerty layout. bool comm_shifted = false; bool ques_shifted = false; bool process_record_user(uint16_t keycode, keyrecord_t *record) { uint8_t shifted; uint16_t s_keycode; bool *k_shifted; switch (keycode) { case KC_COMM: s_keycode = KC_SLSH; k_shifted = &comm_shifted; break; case KC_DOT: s_keycode = KC_1; k_shifted = &ques_shifted; break; default: return true; } shifted = get_mods() & (MOD_BIT(KC_LSHIFT)|MOD_BIT(KC_RSHIFT)); // Keydown. If shift is currently pressed, register its alternate keycode. if (record->event.pressed && shifted) { *k_shifted = true; register_code(s_keycode); return false; // Keyup. If shift was pressed back when the key was pressed, unregister // its alternate keycode. } else if (!(record->event.pressed) && *k_shifted) { *k_shifted = false; unregister_code(s_keycode); return false; // Otherwise, behave as normal. } else { return true; } } // Set the bits of A selected by MASK to the corresponding bits of B #define setbits(A, B, MASK) A = (A & (B | ~MASK)) | (B & MASK) void matrix_scan_user(void) { // // Bit # 7 6 5 4 3 2 1 0 // layer_state: [ | | | _xF | _xN | _xS | _xQ | _xW ] // usb_led [ | | |kana |cmps |scrl |caps | num ] // PORTB: [ NC | 10 | 9 | 8 | 14 | 16 | 15 |rxled] // PORTC: [ NC | 5 | | | | | | ] // PORTD: [ 6 | NC |txled| 4 | tx* | rx* | grn | p29 ] // PORTE: [ | 7 | | | | | | ] // PORTF: [ a0 | a1 | red | blu | | | NC | NC ] // // PD0 is connected to the pairing switch and p29 on the wireless module. // PF0,PF1,PB7,PC7,PD6 are not broken out by the pro micro board. I don't understand why. // PB1-PB6,PD4,PD5,PD6,PF6,PF7 are not connected to the Mitosis receiver // board. Each may be connected to an LED by way of a resistor (4.7k to // match the others) for a total of 14 additional indicators. // A simple (but technically inaccurate) model of the momentary layer state: // Fn1 key makes _xS active; indicator = red // Fn2 key makes _xN active; indicator = blue // Both keys make _xF active; indicator = purple // Toggling QWERTY mode makes indicator include green, so (red/blue/purple becomes yellow/cyan/white) // negated because for ports 0=LED on. uint32_t portf_bits = ~(layer_state|layer_state<<1|(layer_state&0b100)<<3); setbits(PORTF, portf_bits, 0b00110000); setbits(PORTD, ~layer_state, 0b00000010); } // vim: set sw=2 et: