/* Copyright 2012 Jun Wako This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * scan matrix */ #include #include #ifdef USE_I2C // provides memcpy for copying TWI slave buffer // #include #endif #include #include #include #include #include "print.h" #include "debug.h" #include "util.h" #include "matrix.h" #include "split_util.h" #include "pro_micro.h" #include "config.h" #ifdef USE_I2C # include "i2c.h" #else // USE_SERIAL # include "serial.h" #endif #ifndef DEBOUNCE # define DEBOUNCE 5 #endif #define ERROR_DISCONNECT_COUNT 5 static uint8_t debouncing = DEBOUNCE; static const int ROWS_PER_HAND = MATRIX_ROWS/2; static uint8_t error_count = 0; static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS; static const uint8_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS; /* matrix state(1:on, 0:off) */ static matrix_row_t matrix[MATRIX_ROWS]; static matrix_row_t matrix_debouncing[MATRIX_ROWS]; static matrix_row_t read_cols(void); static void init_cols(void); static void unselect_rows(void); static void select_row(uint8_t row); __attribute__ ((weak)) void matrix_init_kb(void) { matrix_init_user(); } __attribute__ ((weak)) void matrix_scan_kb(void) { matrix_scan_user(); } __attribute__ ((weak)) void matrix_init_user(void) { } __attribute__ ((weak)) void matrix_scan_user(void) { } inline uint8_t matrix_rows(void) { return MATRIX_ROWS; } inline uint8_t matrix_cols(void) { return MATRIX_COLS; } void matrix_init(void) { debug_enable = true; debug_matrix = true; debug_mouse = true; // initialize row and col unselect_rows(); init_cols(); TX_RX_LED_INIT; // initialize matrix state: all keys off for (uint8_t i=0; i < MATRIX_ROWS; i++) { matrix[i] = 0; matrix_debouncing[i] = 0; } matrix_init_quantum(); } uint8_t _matrix_scan(void) { // Right hand is stored after the left in the matrix so, we need to offset it int offset = isLeftHand ? 0 : (ROWS_PER_HAND); for (uint8_t i = 0; i < ROWS_PER_HAND; i++) { select_row(i); _delay_us(30); // without this wait read unstable value. matrix_row_t cols = read_cols(); if (matrix_debouncing[i+offset] != cols) { matrix_debouncing[i+offset] = cols; debouncing = DEBOUNCE; } unselect_rows(); } if (debouncing) { if (--debouncing) { _delay_ms(1); } else { for (uint8_t i = 0; i < ROWS_PER_HAND; i++) { matrix[i+offset] = matrix_debouncing[i+offset]; } } } return 1; } #ifdef USE_I2C // Get rows from other half over i2c int i2c_transaction(void) { int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0; int err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE); if (err) goto i2c_error; // start of matrix stored at 0x00 err = i2c_master_write(0x00); if (err) goto i2c_error; // Start read err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_READ); if (err) goto i2c_error; if (!err) { /* // read from TWI byte-by-byte into matrix_row_t memory space size_t i; for (i = 0; i < SLAVE_BUFFER_SIZE-1; ++i) { *((uint8_t*)&matrix[slaveOffset]+i) = i2c_master_read(I2C_ACK); } // last byte to be read / end of chunk *((uint8_t*)&matrix[slaveOffset]+i) = i2c_master_read(I2C_NACK); */ // kludge for column #9: unpack bits for keys (2,9) and (3,9) from (1,7) and (1,8) // i2c_master_read(I2C_ACK); matrix[slaveOffset+0] = i2c_master_read(I2C_ACK); // i2c_master_read(I2C_ACK); matrix[slaveOffset+1] = (matrix_row_t)i2c_master_read(I2C_ACK)\ | (matrix[slaveOffset+0]&0x40U)<<2; // i2c_master_read(I2C_ACK); matrix[slaveOffset+2] = (matrix_row_t)i2c_master_read(I2C_NACK)\ | (matrix[slaveOffset+0]&0x80U)<<1; // clear highest two bits on row 1, where the col9 bits were transported matrix[slaveOffset+0] &= 0x3F; i2c_master_stop(); } else { i2c_error: // the cable is disconnected, or something else went wrong i2c_reset_state(); return err; } return 0; } #else // USE_SERIAL int serial_transaction(void) { int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0; if (serial_update_buffers()) { return 1; } for (int i = 0; i < ROWS_PER_HAND; ++i) { matrix[slaveOffset+i] = serial_slave_buffer[i]; } return 0; } #endif uint8_t matrix_scan(void) { int ret = _matrix_scan(); #ifdef USE_I2C if( i2c_transaction() ) { #else // USE_SERIAL if( serial_transaction() ) { #endif // turn on the indicator led when halves are disconnected TXLED1; error_count++; if (error_count > ERROR_DISCONNECT_COUNT) { // reset other half if disconnected int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0; for (int i = 0; i < ROWS_PER_HAND; ++i) { matrix[slaveOffset+i] = 0; } } } else { // turn off the indicator led on no error TXLED0; error_count = 0; } matrix_scan_quantum(); return ret; } void matrix_slave_scan(void) { _matrix_scan(); int offset = (isLeftHand) ? 0 : ROWS_PER_HAND; #ifdef USE_I2C // SLAVE_BUFFER_SIZE is from i2c.h // (MATRIX_ROWS/2*sizeof(matrix_row_t)) // memcpy((void*)i2c_slave_buffer, (const void*)&matrix[offset], (ROWS_PER_HAND*sizeof(matrix_row_t))); // kludge for column #9: put bits for keys (2,9) and (3,9) into (1,7) and (1,8) i2c_slave_buffer[0] = (uint8_t)(matrix[offset+0])\ | (matrix[offset+1]&0x100U)>>2\ | (matrix[offset+2]&0x100U)>>1; i2c_slave_buffer[1] = (uint8_t)(matrix[offset+1]); i2c_slave_buffer[2] = (uint8_t)(matrix[offset+2]); // note: looks like a possible operator-precedence bug here, in last version? /* i2c_slave_buffer[1] = (uint8_t)matrix[offset+0]; i2c_slave_buffer[2] = (uint8_t)(matrix[offset+1]>>8); i2c_slave_buffer[3] = (uint8_t)(matrix[offset+1]>>8); i2c_slave_buffer[4] = (uint8_t)(matrix[offset+2]>>8); i2c_slave_buffer[5] = (uint8_t)matrix[offset+2]; */ #else // USE_SERIAL for (int i = 0; i < ROWS_PER_HAND; ++i) { serial_slave_buffer[i] = matrix[offset+i]; } #endif } bool matrix_is_modified(void) { if (debouncing) return false; return true; } inline bool matrix_is_on(uint8_t row, uint8_t col) { return (matrix[row] & ((matrix_row_t)1<> 4) + 1) &= ~_BV(col_pins[x] & 0xF); _SFR_IO8((col_pins[x] >> 4) + 2) |= _BV(col_pins[x] & 0xF); } } static matrix_row_t read_cols(void) { matrix_row_t result = 0; for(int x = 0; x < MATRIX_COLS; x++) { result |= (_SFR_IO8(col_pins[x] >> 4) & _BV(col_pins[x] & 0xF)) ? 0 : (1 << x); } return result; } static void unselect_rows(void) { for(int x = 0; x < ROWS_PER_HAND; x++) { _SFR_IO8((row_pins[x] >> 4) + 1) &= ~_BV(row_pins[x] & 0xF); _SFR_IO8((row_pins[x] >> 4) + 2) |= _BV(row_pins[x] & 0xF); } } static void select_row(uint8_t row) { _SFR_IO8((row_pins[row] >> 4) + 1) |= _BV(row_pins[row] & 0xF); _SFR_IO8((row_pins[row] >> 4) + 2) &= ~_BV(row_pins[row] & 0xF); }