/* Copyright 2012 Jun Wako Copyright 2017 Cole Markham This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* * scan matrix */ #include #include #if defined(__AVR__) #include #include "pincontrol.h" #endif #include "wait.h" #include "print.h" #include "debug.h" #include "util.h" #include "matrix.h" #include "config.h" #include "timer.h" //#include "audio.h" #ifndef DEBOUNCING_DELAY # define DEBOUNCING_DELAY 5 #endif #if (DEBOUNCING_DELAY > 0) static uint16_t debouncing_time; static bool debouncing = false; #endif #if (MATRIX_COLS <= 8) # define print_matrix_header() print("\nr/c 01234567\n") # define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row)) # define matrix_bitpop(i) bitpop(matrix[i]) # define ROW_SHIFTER ((uint8_t)1) #elif (MATRIX_COLS <= 16) # define print_matrix_header() print("\nr/c 0123456789ABCDEF\n") # define print_matrix_row(row) print_bin_reverse16(matrix_get_row(row)) # define matrix_bitpop(i) bitpop16(matrix[i]) # define ROW_SHIFTER ((uint16_t)1) #elif (MATRIX_COLS <= 32) # define print_matrix_header() print("\nr/c 0123456789ABCDEF0123456789ABCDEF\n") # define print_matrix_row(row) print_bin_reverse32(matrix_get_row(row)) # define matrix_bitpop(i) bitpop32(matrix[i]) # define ROW_SHIFTER ((uint32_t)1) #endif static matrix_row_t matrix_debouncing[MATRIX_ROWS]; static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS; static const uint8_t col_pins[4] = MATRIX_COL_PINS; static const uint8_t xcol_pins[MATRIX_COLS - 16] = MATRIX_XCOL_PINS; // //float init_song[][2] = SONG(QWERTY_SOUND); /* matrix state(1:on, 0:off) */ static matrix_row_t matrix[MATRIX_ROWS]; static matrix_row_t matrix_debouncing[MATRIX_ROWS]; static void init_rows(void); static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col); static void unselect_cols(void); static void init_cols(void); static void select_col(uint8_t col); //static void demux_enable(bool enabled); __attribute__ ((weak)) void matrix_init_quantum(void) { matrix_init_kb(); } __attribute__ ((weak)) void matrix_scan_quantum(void) { matrix_scan_kb(); } __attribute__ ((weak)) void matrix_init_kb(void) { matrix_init_user(); } __attribute__ ((weak)) void matrix_scan_kb(void) { matrix_scan_user(); } __attribute__ ((weak)) void matrix_init_user(void) { } __attribute__ ((weak)) void matrix_scan_user(void) { } inline uint8_t matrix_rows(void) { return MATRIX_ROWS; } inline uint8_t matrix_cols(void) { return MATRIX_COLS; } void matrix_init(void) { debug_enable = true; debug_matrix = true; debug_mouse = true; dprintf("matrix init"); // initialize row and col init_cols(); init_rows(); // PLAY_NOTE_ARRAY(init_song, false, 0); // initialize matrix state: all keys off for (uint8_t i=0; i < MATRIX_ROWS; i++) { matrix[i] = 0; matrix_debouncing[i] = 0; } matrix_init_quantum(); } uint8_t _matrix_scan(void) { // Set col, read rows for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) { # if (DEBOUNCING_DELAY > 0) bool matrix_changed = read_rows_on_col(matrix_debouncing, current_col); if (matrix_changed) { debouncing = true; debouncing_time = timer_read(); } # else read_rows_on_col(matrix, current_col); # endif } // Unselect cols unselect_cols(); # if (DEBOUNCING_DELAY > 0) if (debouncing && (timer_elapsed(debouncing_time) > DEBOUNCING_DELAY)) { for (uint8_t i = 0; i < MATRIX_ROWS; i++) { matrix[i] = matrix_debouncing[i]; } debouncing = false; } # endif return 1; } uint8_t matrix_scan(void) { uint8_t ret = _matrix_scan(); matrix_scan_quantum(); return ret; } bool matrix_is_modified(void) { if (debouncing) return false; return true; } inline bool matrix_is_on(uint8_t row, uint8_t col) { return (matrix[row] & ((matrix_row_t)1<= 16) { // demux_enable(false); // digitalWrite(MATRIX_EN_PIN, PinLevelHigh); } else { for(uint8_t x = 0; x < 4; x++) { uint8_t pin = col_pins[x]; pinMode(pin, PinDirectionOutput); digitalWrite(pin, (col >> x) & 0x1); } // demux_enable(true); digitalWrite(MATRIX_EN_PIN, PinLevelLow); } } static void init_cols(void) { for (uint8_t y = 16; y < MATRIX_COLS; y++) { uint8_t pin = xcol_pins[y-16]; pinMode(pin, PinDirectionOutput); } for(uint8_t x = 0; x < 4; x++) { uint8_t pin = col_pins[x]; pinMode(pin, PinDirectionOutput); } pinMode(MATRIX_EN_PIN, PinDirectionOutput); // digitalWrite(MATRIX_EN_PIN, PinLevelHigh); unselect_cols(); } static void unselect_cols(void) { for (uint8_t y = 16; y < MATRIX_COLS; y++) { uint8_t pin = xcol_pins[y-16]; digitalWrite(pin, PinLevelHigh); } // demux_enable(false); // digitalWrite(MATRIX_EN_PIN, PinLevelHigh); } //static void demux_enable(uint8_t state) //{ // if (enabled){ // digitalWrite(F7, PinLevelLow); // } else { // digitalWrite(F7, PinLevelHigh); // } //}