/* MIT License Copyright (c) 2018, JacoBurge Adapted for QMK by Jack Humbert in 2018 Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "matrix.h" #include "i2c_master.h" #include "quantum.h" #define VIBRATE_LENGTH 50 //Defines number of interrupts motor will vibrate for, must be bigger than 8 for correct operation volatile uint8_t vibrate = 0; //Trigger vibration in interrupt static matrix_row_t matrix[MATRIX_ROWS]; const uint8_t SENr[6] = {1, 2, 3, 5, 6, 7};//Maps capacitive pads to pins const uint8_t SENc[6] = {0, 4, 8, 9, 10, 11}; volatile uint8_t LEDs[6][6] = {{0}};//Stores current LED values //Read data from the cap touch IC uint8_t readDataFromTS(uint8_t reg) { uint8_t rx[1] = { 0 }; if (i2c_readReg(0x1C << 1, reg, rx, 1, 100) == 0) { return rx[0]; } return 0; } //Write data to cap touch IC uint8_t writeDataToTS(uint8_t reg, uint8_t data) { uint8_t tx[2] = { reg, data }; if (i2c_transmit(0x1C << 1, tx, 2, 100) == 0) { return 1; } else { return 0; } } uint8_t checkTSPres(void) { return (readDataFromTS(0x00) == 0x3E); } uint8_t capSetup(void) { uint8_t temp_return = checkTSPres(); if (temp_return == 1) { // Perform measurements every 16ms writeDataToTS(0x08, 1); // Increase detection integrator value writeDataToTS(0x0B, 1); // Oversample to gain two bits for columns writeDataToTS(0x28, 0x42); writeDataToTS(0x29, 0x00); writeDataToTS(0x2A, 0x00); writeDataToTS(0x2B, 0x00); writeDataToTS(0x2C, 0x42); writeDataToTS(0x2D, 0x00); writeDataToTS(0x2E, 0x00); writeDataToTS(0x2F, 0x00); writeDataToTS(0x30, 0x42); writeDataToTS(0x31, 0x42); writeDataToTS(0x32, 0x42); writeDataToTS(0x33, 0x42); // Recalibration if touch detected for more than 8 seconds n*0.16s writeDataToTS(0x0C, 50); // Enable keys and set key groups writeDataToTS(0x1C, 0x00 | 0x04); writeDataToTS(0x1D, 0x00 | 0x08); writeDataToTS(0x1E, 0x00 | 0x08); writeDataToTS(0x1F, 0x00 | 0x08); writeDataToTS(0x20, 0x00 | 0x04); writeDataToTS(0x21, 0x00 | 0x08); writeDataToTS(0x22, 0x00 | 0x08); writeDataToTS(0x23, 0x00 | 0x08); writeDataToTS(0x24, 0x00 | 0x04); writeDataToTS(0x25, 0x00 | 0x04); writeDataToTS(0x26, 0x00 | 0x04); writeDataToTS(0x27, 0x00 | 0x04); } return temp_return; } __attribute__ ((weak)) void matrix_init_user(void) {} __attribute__ ((weak)) void matrix_scan_user(void) {} __attribute__ ((weak)) void matrix_init_kb(void) { matrix_init_user(); } __attribute__ ((weak)) void matrix_scan_kb(void) { matrix_scan_user(); } void matrix_init(void) { i2c_init(); //Motor enable setPinOutput(E6); //Motor PWM setPinOutput(D7); //Power LED setPinOutput(B7); writePinHigh(B7); //LEDs Columns setPinOutput(F7); setPinOutput(F6); setPinOutput(F5); setPinOutput(F4); setPinOutput(F1); setPinOutput(F0); //LEDs Rows setPinOutput(D6); setPinOutput(B4); setPinOutput(B5); setPinOutput(B6); setPinOutput(C6); setPinOutput(C7); //Capacitive Interrupt setPinInput(D2); capSetup(); writeDataToTS(0x06, 0x12); //Calibrate capacitive touch IC memset(matrix, 0, MATRIX_ROWS * sizeof(matrix_row_t)); matrix_init_quantum(); } uint16_t touchDetectionRoutine(void) { uint16_t data; uint8_t temp1, temp2; temp1 = readDataFromTS(0x04); temp2 = readDataFromTS(0x03); data = temp1; data = (data << 8) | temp2; return data; } //Process raw capacitive data, map pins to rows and columns void decodeArray(uint16_t dataIn, uint8_t *column, uint8_t *row) { uint8_t i1 = 20, i2 = 20; for (uint8_t i = 0; i < 12; i++) { if ((dataIn & 0b1) == 1) { if (i1 == 20) { i1 = i; } else if (i2 == 20) { i2 = i; } } dataIn = dataIn >> 1; } for (uint8_t j = 0; j < 6; j++) { if (SENr[j] == i1 || SENr[j] == i2) { *row = j; } if (SENc[j] == i1 || SENc[j] == i2) { *column = j; } } } void touchClearCurrentDetections(void) { readDataFromTS(0x05); readDataFromTS(0x02); readDataFromTS(0x03); readDataFromTS(0x04); } //Check interrupt pin uint8_t isTouchChangeDetected(void) { return !readPin(D2); } uint8_t matrix_scan(void) { if (isTouchChangeDetected()) { uint16_t dataIn = touchDetectionRoutine(); if ((dataIn & 0b111100010001) > 0 && (dataIn & 0b000011101110) > 0) { uint8_t column = 10, row = 10; decodeArray(dataIn, &column, &row); if (column != 10 && row != 10) { vibrate = VIBRATE_LENGTH; //Trigger vibration matrix[row] = _BV(column); } else { memset(matrix, 0, MATRIX_ROWS * sizeof(matrix_row_t)); } } else { memset(matrix, 0, MATRIX_ROWS * sizeof(matrix_row_t)); } touchClearCurrentDetections(); } for (uint8_t c = 0; c < 6; c++) { for (uint8_t r = 0; r < 6; r++) { switch (r) { case 0: writePin(D6, matrix_is_on(r, c)); break; case 1: writePin(B4, matrix_is_on(r, c)); break; case 2: writePin(B5, matrix_is_on(r, c)); break; case 3: writePin(B6, matrix_is_on(r, c)); break; case 4: writePin(C6, matrix_is_on(r, c)); break; case 5: writePin(C7, matrix_is_on(r, c)); break; } switch (c) { case 0: writePin(F5, !matrix_is_on(r, c)); break; case 1: writePin(F4, !matrix_is_on(r, c)); break; case 2: writePin(F1, !matrix_is_on(r, c)); break; case 3: writePin(F0, !matrix_is_on(r, c)); break; case 4: writePin(F6, !matrix_is_on(r, c)); break; case 5: writePin(F7, !matrix_is_on(r, c)); break; } } } if (vibrate == VIBRATE_LENGTH) { writePinHigh(E6); writePinHigh(D7); vibrate--; } else if (vibrate > 0) { vibrate--; } else if (vibrate == 0) { writePinLow(D7); writePinLow(E6); } matrix_scan_quantum(); return 1; } bool matrix_is_on(uint8_t row, uint8_t col) { return (matrix[row] & (1<