#include "config.h" #include "matrix.h" #include "quantum.h" #define ROWS_PER_HAND (MATRIX_ROWS / 2) #ifdef RGBLIGHT_ENABLE # include "rgblight.h" #endif #ifdef BACKLIGHT_ENABLE # include "backlight.h" extern backlight_config_t backlight_config; #endif #if defined(USE_I2C) || defined(EH) # include "i2c_master.h" # include "i2c_slave.h" # define I2C_BACKLIT_START 0x00 // Need 4 bytes for RGB (32 bit) # define I2C_RGB_START 0x01 # define I2C_KEYMAP_START 0x05 # define TIMEOUT 100 # ifndef SLAVE_I2C_ADDRESS # define SLAVE_I2C_ADDRESS 0x32 # endif // Get rows from other half over i2c bool transport_master(matrix_row_t matrix[]) { i2c_readReg(SLAVE_I2C_ADDRESS, I2C_KEYMAP_START, (void *)matrix, ROWS_PER_HAND * sizeof(matrix_row_t), TIMEOUT); // write backlight info # ifdef BACKLIGHT_ENABLE static uint8_t prev_level = ~0; uint8_t level = get_backlight_level(); if (level != prev_level) { i2c_writeReg(SLAVE_I2C_ADDRESS, I2C_BACKLIT_START, (void *)&level, sizeof(level), TIMEOUT); prev_level = level; } # endif # ifdef RGBLIGHT_ENABLE static uint32_t prev_rgb = ~0; uint32_t rgb = eeconfig_read_rgblight(); if (rgb != prev_rgb) { i2c_writeReg(SLAVE_I2C_ADDRESS, I2C_RGB_START, (void *)&rgb, sizeof(rgb), TIMEOUT); prev_rgb = rgb; } # endif return true; } void transport_slave(matrix_row_t matrix[]) { for (int i = 0; i < ROWS_PER_HAND * sizeof(matrix_row_t); ++i) { i2c_slave_reg[I2C_KEYMAP_START + i] = matrix[i]; } // Read Backlight Info # ifdef BACKLIGHT_ENABLE backlight_set(i2c_slave_reg[I2C_BACKLIT_START]); # endif # ifdef RGBLIGHT_ENABLE uint32_t rgb = *(uint32_t *)(i2c_slave_reg + I2C_RGB_START); // Update the RGB with the new data rgblight_update_dword(rgb); # endif } void transport_master_init(void) { i2c_init(); } void transport_slave_init(void) { i2c_slave_init(SLAVE_I2C_ADDRESS); } #else // USE_SERIAL # include "serial.h" typedef struct _Serial_s2m_buffer_t { // TODO: if MATRIX_COLS > 8 change to uint8_t packed_matrix[] for pack/unpack matrix_row_t smatrix[ROWS_PER_HAND]; } Serial_s2m_buffer_t; typedef struct _Serial_m2s_buffer_t { # ifdef BACKLIGHT_ENABLE uint8_t backlight_level; # endif # if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT) rgblight_config_t rgblight_config; // not yet use // // When MCUs on both sides drive their respective RGB LED chains, // it is necessary to synchronize, so it is necessary to communicate RGB // information. In that case, define the RGBLIGHT_SPLIT macro. // // Otherwise, if the master side MCU drives both sides RGB LED chains, // there is no need to communicate. # endif } Serial_m2s_buffer_t; volatile Serial_s2m_buffer_t serial_s2m_buffer = {}; volatile Serial_m2s_buffer_t serial_m2s_buffer = {}; uint8_t volatile status0 = 0; SSTD_t transactions[] = { { (uint8_t *)&status0, sizeof(serial_m2s_buffer), (uint8_t *)&serial_m2s_buffer, sizeof(serial_s2m_buffer), (uint8_t *)&serial_s2m_buffer, }, }; void transport_master_init(void) { soft_serial_initiator_init(transactions, TID_LIMIT(transactions)); } void transport_slave_init(void) { soft_serial_target_init(transactions, TID_LIMIT(transactions)); } bool transport_master(matrix_row_t matrix[]) { if (soft_serial_transaction()) { return false; } // TODO: if MATRIX_COLS > 8 change to unpack() for (int i = 0; i < ROWS_PER_HAND; ++i) { matrix[i] = serial_s2m_buffer.smatrix[i]; } # if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT) // Code to send RGB over serial goes here (not implemented yet) # endif # ifdef BACKLIGHT_ENABLE // Write backlight level for slave to read serial_m2s_buffer.backlight_level = backlight_config.enable ? backlight_config.level : 0; # endif return true; } void transport_slave(matrix_row_t matrix[]) { // TODO: if MATRIX_COLS > 8 change to pack() for (int i = 0; i < ROWS_PER_HAND; ++i) { serial_s2m_buffer.smatrix[i] = matrix[i]; } # ifdef BACKLIGHT_ENABLE backlight_set(serial_m2s_buffer.backlight_level); # endif # if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT) // Add serial implementation for RGB here # endif } #endif