#include #include #include "config.h" #include "matrix.h" #include "quantum.h" #define ROWS_PER_HAND (MATRIX_ROWS / 2) #ifdef RGBLIGHT_ENABLE # include "rgblight.h" #endif #ifdef BACKLIGHT_ENABLE # include "backlight.h" extern backlight_config_t backlight_config; #endif #ifdef ENCODER_ENABLE # include "encoder.h" #endif #if defined(USE_I2C) || defined(EH) # include "i2c_master.h" # include "i2c_slave.h" typedef struct __attribute__ ((__packed__)) { #ifdef BACKLIGHT_ENABLE uint8_t backlight_level; #endif #ifdef RGBLIGHT_ENABLE uint32_t rgb_settings; #endif #ifdef ENCODER_ENABLE uint8_t encoder_state[NUMBER_OF_ENCODERS]; #endif // Keep matrix last, we are only using this for it's offset uint8_t matrix_start[0]; } transport_values_t; __attribute__ ((unused)) static transport_values_t transport_values; #ifdef BACKLIGHT_ENABLE # define I2C_BACKLIT_START (uint8_t)offsetof(transport_values_t, backlight_level) #endif #ifdef RGBLIGHT_ENABLE # define I2C_RGB_START (uint8_t)offsetof(transport_values_t, rgb_settings) #endif #ifdef ENCODER_ENABLE # define I2C_ENCODER_START (uint8_t)offsetof(transport_values_t, encoder_state) #endif #define I2C_KEYMAP_START (uint8_t)offsetof(transport_values_t, matrix_start) # define TIMEOUT 100 # ifndef SLAVE_I2C_ADDRESS # define SLAVE_I2C_ADDRESS 0x32 # endif // Get rows from other half over i2c bool transport_master(matrix_row_t matrix[]) { i2c_readReg(SLAVE_I2C_ADDRESS, I2C_KEYMAP_START, (void *)matrix, ROWS_PER_HAND * sizeof(matrix_row_t), TIMEOUT); // write backlight info # ifdef BACKLIGHT_ENABLE uint8_t level = get_backlight_level(); if (level != transport_values.backlight_level) { if (i2c_writeReg(SLAVE_I2C_ADDRESS, I2C_BACKLIT_START, (void *)&level, sizeof(level), TIMEOUT) >= 0) { transport_values.backlight_level = level; } } # endif # ifdef RGBLIGHT_ENABLE uint32_t rgb = rgblight_read_dword(); if (rgb != transport_values.rgb_settings) { if (i2c_writeReg(SLAVE_I2C_ADDRESS, I2C_RGB_START, (void *)&rgb, sizeof(rgb), TIMEOUT) >= 0) { transport_values.rgb_settings = rgb; } } # endif # ifdef ENCODER_ENABLE i2c_readReg(SLAVE_I2C_ADDRESS, I2C_ENCODER_START, (void *)transport_values.encoder_state, sizeof(transport_values.encoder_state), TIMEOUT); encoder_update_raw(&transport_values.encoder_state[0]); # endif return true; } void transport_slave(matrix_row_t matrix[]) { // Copy matrix to I2C buffer memcpy((void*)(i2c_slave_reg + I2C_KEYMAP_START), (void *)matrix, ROWS_PER_HAND * sizeof(matrix_row_t) ); // Read Backlight Info # ifdef BACKLIGHT_ENABLE backlight_set(i2c_slave_reg[I2C_BACKLIT_START]); # endif # ifdef RGBLIGHT_ENABLE uint32_t rgb = *(uint32_t *)(i2c_slave_reg + I2C_RGB_START); // Update the RGB with the new data rgblight_update_dword(rgb); # endif # ifdef ENCODER_ENABLE encoder_state_raw((uint8_t*)(i2c_slave_reg + I2C_ENCODER_START)); # endif } void transport_master_init(void) { i2c_init(); } void transport_slave_init(void) { i2c_slave_init(SLAVE_I2C_ADDRESS); } #else // USE_SERIAL # include "serial.h" typedef struct __attribute__ ((__packed__)) { # ifdef ENCODER_ENABLE uint8_t encoder_state[NUMBER_OF_ENCODERS]; # endif // TODO: if MATRIX_COLS > 8 change to uint8_t packed_matrix[] for pack/unpack matrix_row_t smatrix[ROWS_PER_HAND]; } Serial_s2m_buffer_t; typedef struct __attribute__ ((__packed__)) { # ifdef BACKLIGHT_ENABLE uint8_t backlight_level; # endif # if defined(RGBLIGHT_ENABLE) && defined(RGBLED_SPLIT) rgblight_config_t rgblight_config; // not yet use // // When MCUs on both sides drive their respective RGB LED chains, // it is necessary to synchronize, so it is necessary to communicate RGB // information. In that case, define RGBLED_SPLIT with info on the number // of LEDs on each half. // // Otherwise, if the master side MCU drives both sides RGB LED chains, // there is no need to communicate. # endif } Serial_m2s_buffer_t; volatile Serial_s2m_buffer_t serial_s2m_buffer = {}; volatile Serial_m2s_buffer_t serial_m2s_buffer = {}; uint8_t volatile status0 = 0; SSTD_t transactions[] = { { (uint8_t *)&status0, sizeof(serial_m2s_buffer), (uint8_t *)&serial_m2s_buffer, sizeof(serial_s2m_buffer), (uint8_t *)&serial_s2m_buffer, }, }; void transport_master_init(void) { soft_serial_initiator_init(transactions, TID_LIMIT(transactions)); } void transport_slave_init(void) { soft_serial_target_init(transactions, TID_LIMIT(transactions)); } bool transport_master(matrix_row_t matrix[]) { if (soft_serial_transaction()) { return false; } // TODO: if MATRIX_COLS > 8 change to unpack() for (int i = 0; i < ROWS_PER_HAND; ++i) { matrix[i] = serial_s2m_buffer.smatrix[i]; } # ifdef BACKLIGHT_ENABLE // Write backlight level for slave to read serial_m2s_buffer.backlight_level = backlight_config.enable ? backlight_config.level : 0; # endif # if defined(RGBLIGHT_ENABLE) && defined(RGBLED_SPLIT) static rgblight_config_t prev_rgb = {~0}; uint32_t rgb = rgblight_read_dword(); if (rgb != prev_rgb.raw) { serial_m2s_buffer.rgblight_config.raw = rgb; prev_rgb.raw = rgb; } # endif # ifdef ENCODER_ENABLE encoder_update_raw((uint8_t*)&serial_s2m_buffer.encoder_state); # endif return true; } void transport_slave(matrix_row_t matrix[]) { // TODO: if MATRIX_COLS > 8 change to pack() for (int i = 0; i < ROWS_PER_HAND; ++i) { serial_s2m_buffer.smatrix[i] = matrix[i]; } # ifdef BACKLIGHT_ENABLE backlight_set(serial_m2s_buffer.backlight_level); # endif # if defined(RGBLIGHT_ENABLE) && defined(RGBLED_SPLIT) // Update RGB config with the new data rgblight_update_dword(serial_m2s_buffer.rgblight_config.raw); # endif # ifdef ENCODER_ENABLE encoder_state_raw((uint8_t*)&serial_s2m_buffer.encoder_state); # endif } #endif