1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
|
#include "planck.h"
__attribute__ ((weak))
void matrix_init_user(void) {}
__attribute__ ((weak))
void matrix_scan_user(void) {}
__attribute__ ((weak))
void process_action_user(keyrecord_t *record) {}
__attribute__ ((weak))
void led_set_user(uint8_t usb_led) {}
void matrix_init_kb(void) {
#ifdef BACKLIGHT_ENABLE
backlight_init_ports();
#endif
#ifdef RGBLIGHT_ENABLE
rgblight_init();
#endif
// Turn status LED on
DDRE |= (1<<6);
PORTE |= (1<<6);
matrix_init_user();
}
void matrix_scan_kb(void) {
matrix_scan_user();
}
void process_action_kb(keyrecord_t *record) {
process_action_user(record);
}
void led_set_kb(uint8_t usb_led) {
// put your keyboard LED indicator (ex: Caps Lock LED) toggling code here
led_set_user(usb_led);
}
#ifdef BACKLIGHT_ENABLE
#define CHANNEL OCR1C
#define BREATHING_NO_HALT 0
#define BREATHING_HALT_OFF 1
#define BREATHING_HALT_ON 2
static uint8_t breath_intensity;
static uint8_t breath_speed;
static uint16_t breathing_index;
static uint8_t breathing_halt;
void backlight_init_ports()
{
// Setup PB7 as output and output low.
DDRB |= (1<<7);
PORTB &= ~(1<<7);
// Use full 16-bit resolution.
ICR1 = 0xFFFF;
// I could write a wall of text here to explain... but TL;DW
// Go read the ATmega32u4 datasheet.
// And this: http://blog.saikoled.com/post/43165849837/secret-konami-cheat-code-to-high-resolution-pwm-on
// Pin PB7 = OCR1C (Timer 1, Channel C)
// Compare Output Mode = Clear on compare match, Channel C = COM1C1=1 COM1C0=0
// (i.e. start high, go low when counter matches.)
// WGM Mode 14 (Fast PWM) = WGM13=1 WGM12=1 WGM11=1 WGM10=0
// Clock Select = clk/1 (no prescaling) = CS12=0 CS11=0 CS10=1
TCCR1A = _BV(COM1C1) | _BV(WGM11); // = 0b00001010;
TCCR1B = _BV(WGM13) | _BV(WGM12) | _BV(CS10); // = 0b00011001;
backlight_init();
breathing_defaults();
}
void backlight_set(uint8_t level)
{
// Prevent backlight blink on lowest level
PORTB &= ~(_BV(PORTB7));
if ( level == 0 )
{
// Turn off PWM control on PB7, revert to output low.
TCCR1A &= ~(_BV(COM1C1));
CHANNEL = 0x0;
}
else if ( level == BACKLIGHT_LEVELS )
{
// Turn on PWM control of PB7
TCCR1A |= _BV(COM1C1);
// Set the brightness
CHANNEL = 0xFFFF;
}
else
{
// Turn on PWM control of PB7
TCCR1A |= _BV(COM1C1);
// Set the brightness
CHANNEL = 0xFFFF >> ((BACKLIGHT_LEVELS - level) * ((BACKLIGHT_LEVELS + 1) / 2));
}
breathing_intensity_default();
}
void breathing_enable(void)
{
if (get_backlight_level() == 0)
{
breathing_index = 0;
}
else
{
// Set breathing_index to be at the midpoint (brightest point)
breathing_index = 0x20 << breath_speed;
}
breathing_halt = BREATHING_NO_HALT;
// Enable breathing interrupt
TIMSK1 |= _BV(OCIE1A);
}
void breathing_pulse(void)
{
if (get_backlight_level() == 0)
{
breathing_index = 0;
}
else
{
// Set breathing_index to be at the midpoint + 1 (brightest point)
breathing_index = 0x21 << breath_speed;
}
breathing_halt = BREATHING_HALT_ON;
// Enable breathing interrupt
TIMSK1 |= _BV(OCIE1A);
}
void breathing_disable(void)
{
// Disable breathing interrupt
TIMSK1 &= ~_BV(OCIE1A);
backlight_set(get_backlight_level());
}
void breathing_self_disable(void)
{
if (get_backlight_level() == 0)
{
breathing_halt = BREATHING_HALT_OFF;
}
else
{
breathing_halt = BREATHING_HALT_ON;
}
//backlight_set(get_backlight_level());
}
void breathing_toggle(void)
{
if (!is_breathing())
{
if (get_backlight_level() == 0)
{
breathing_index = 0;
}
else
{
// Set breathing_index to be at the midpoint + 1 (brightest point)
breathing_index = 0x21 << breath_speed;
}
breathing_halt = BREATHING_NO_HALT;
}
// Toggle breathing interrupt
TIMSK1 ^= _BV(OCIE1A);
// Restore backlight level
if (!is_breathing())
{
backlight_set(get_backlight_level());
}
}
bool is_breathing(void)
{
return (TIMSK1 && _BV(OCIE1A));
}
void breathing_intensity_default(void)
{
//breath_intensity = (uint8_t)((uint16_t)100 * (uint16_t)get_backlight_level() / (uint16_t)BACKLIGHT_LEVELS);
breath_intensity = ((BACKLIGHT_LEVELS - get_backlight_level()) * ((BACKLIGHT_LEVELS + 1) / 2));
}
void breathing_intensity_set(uint8_t value)
{
breath_intensity = value;
}
void breathing_speed_default(void)
{
breath_speed = 4;
}
void breathing_speed_set(uint8_t value)
{
bool is_breathing_now = is_breathing();
uint8_t old_breath_speed = breath_speed;
if (is_breathing_now)
{
// Disable breathing interrupt
TIMSK1 &= ~_BV(OCIE1A);
}
breath_speed = value;
if (is_breathing_now)
{
// Adjust index to account for new speed
breathing_index = (( (uint8_t)( (breathing_index) >> old_breath_speed ) ) & 0x3F) << breath_speed;
// Enable breathing interrupt
TIMSK1 |= _BV(OCIE1A);
}
}
void breathing_speed_inc(uint8_t value)
{
if ((uint16_t)(breath_speed - value) > 10 )
{
breathing_speed_set(0);
}
else
{
breathing_speed_set(breath_speed - value);
}
}
void breathing_speed_dec(uint8_t value)
{
if ((uint16_t)(breath_speed + value) > 10 )
{
breathing_speed_set(10);
}
else
{
breathing_speed_set(breath_speed + value);
}
}
void breathing_defaults(void)
{
breathing_intensity_default();
breathing_speed_default();
breathing_halt = BREATHING_NO_HALT;
}
/* Breathing Sleep LED brighness(PWM On period) table
* (64[steps] * 4[duration]) / 64[PWM periods/s] = 4 second breath cycle
*
* http://www.wolframalpha.com/input/?i=%28sin%28+x%2F64*pi%29**8+*+255%2C+x%3D0+to+63
* (0..63).each {|x| p ((sin(x/64.0*PI)**8)*255).to_i }
*/
static const uint8_t breathing_table[64] PROGMEM = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 6, 10,
15, 23, 32, 44, 58, 74, 93, 113, 135, 157, 179, 199, 218, 233, 245, 252,
255, 252, 245, 233, 218, 199, 179, 157, 135, 113, 93, 74, 58, 44, 32, 23,
15, 10, 6, 4, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
ISR(TIMER1_COMPA_vect)
{
// CHANNEL = (pgm_read_byte(&breathing_table[ ( (uint8_t)( (breathing_index++) >> breath_speed ) ) & 0x3F ] )) * breath_intensity;
uint8_t local_index = ( (uint8_t)( (breathing_index++) >> breath_speed ) ) & 0x3F;
if (((breathing_halt == BREATHING_HALT_ON) && (local_index == 0x20)) || ((breathing_halt == BREATHING_HALT_OFF) && (local_index == 0x3F)))
{
// Disable breathing interrupt
TIMSK1 &= ~_BV(OCIE1A);
}
CHANNEL = (uint16_t)(((uint16_t)pgm_read_byte(&breathing_table[local_index]) * 257)) >> breath_intensity;
}
#endif
|