summaryrefslogtreecommitdiffstats
path: root/keyboards/cannonkeys/satisfaction75/led.c
blob: 3ddcec2028bd7f137580ca7fe1a75d8ebfd46d67 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
/*
Copyright 2012 Jun Wako <wakojun@gmail.com>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#include "hal.h"
#include "led_custom.h"
#include "satisfaction75.h"
#include "printf.h"

static void breathing_callback(PWMDriver *pwmp);

static PWMConfig pwmCFG = {
  0xFFFF,                              /* PWM clock frequency  */
  256,                              /* PWM period (in ticks) 1S (1/10kHz=0.1mS 0.1ms*10000 ticks=1S) */
  NULL,                               /* No Callback */
  {
      {PWM_OUTPUT_ACTIVE_HIGH, NULL}, /* Enable Channel 0 */
      {PWM_OUTPUT_DISABLED, NULL},
      {PWM_OUTPUT_DISABLED, NULL},
      {PWM_OUTPUT_DISABLED, NULL}
  },
  0,                                  /* HW dependent part.*/
  0
};

static PWMConfig pwmCFG_breathing = {
  0xFFFF,                              /* 10kHz PWM clock frequency  */
  256,                              /* PWM period (in ticks) 1S (1/10kHz=0.1mS 0.1ms*10000 ticks=1S) */
  breathing_callback,                               /* Breathing Callback */
  {
      {PWM_OUTPUT_ACTIVE_HIGH, NULL}, /* Enable Channel 0 */
      {PWM_OUTPUT_DISABLED, NULL},
      {PWM_OUTPUT_DISABLED, NULL},
      {PWM_OUTPUT_DISABLED, NULL}
  },
  0,                                  /* HW dependent part.*/
  0
};

// See http://jared.geek.nz/2013/feb/linear-led-pwm
static uint16_t cie_lightness(uint16_t v) {
  if (v <= 5243) // if below 8% of max
    return v / 9; // same as dividing by 900%
  else {
    uint32_t y = (((uint32_t) v + 10486) << 8) / (10486 + 0xFFFFUL); // add 16% of max and compare
    // to get a useful result with integer division, we shift left in the expression above
    // and revert what we've done again after squaring.
    y = y * y * y >> 8;
    if (y > 0xFFFFUL) // prevent overflow
      return 0xFFFFU;
    else
      return (uint16_t) y;
  }
}


void backlight_init_ports(void) {
  palSetPadMode(GPIOA, 6, PAL_MODE_ALTERNATE(1));
  pwmStart(&PWMD3, &pwmCFG);
  if(kb_backlight_config.enable){
    if(kb_backlight_config.breathing){
      breathing_enable();
    } else{
      backlight_set(kb_backlight_config.level);
    }
  } else {
    backlight_set(0);
  }
}

void backlight_set(uint8_t level) {
  uint32_t duty = (uint32_t)(cie_lightness(0xFFFF * (uint32_t) level / BACKLIGHT_LEVELS));
  if (level == 0) {
      // Turn backlight off
      pwmDisableChannel(&PWMD3, 0);
  } else {
    // Turn backlight on
    if(!is_breathing()){
      pwmEnableChannel(&PWMD3, 0, PWM_FRACTION_TO_WIDTH(&PWMD3,0xFFFF,duty));
    }
  }
}


uint8_t backlight_tick = 0;

void backlight_task(void) {
}

#define BREATHING_NO_HALT  0
#define BREATHING_HALT_OFF 1
#define BREATHING_HALT_ON  2
#define BREATHING_STEPS 128

static uint8_t breathing_period = BREATHING_PERIOD;
static uint8_t breathing_halt = BREATHING_NO_HALT;
static uint16_t breathing_counter = 0;

bool is_breathing(void) {
    return PWMD3.config == &pwmCFG_breathing;
}

#define breathing_min() do {breathing_counter = 0;} while (0)
#define breathing_max() do {breathing_counter = breathing_period * 256 / 2;} while (0)


void breathing_interrupt_enable(void){
    pwmStop(&PWMD3);
    pwmStart(&PWMD3, &pwmCFG_breathing);
    chSysLockFromISR();
    pwmEnablePeriodicNotification(&PWMD3);
    pwmEnableChannelI(
      &PWMD3,
      0,
      PWM_FRACTION_TO_WIDTH(
        &PWMD3,
        0xFFFF,
        0xFFFF
      )
    );
    chSysUnlockFromISR();
}

void breathing_interrupt_disable(void){
    pwmStop(&PWMD3);
    pwmStart(&PWMD3, &pwmCFG);
}

void breathing_enable(void)
{
  breathing_counter = 0;
  breathing_halt = BREATHING_NO_HALT;
  breathing_interrupt_enable();
}

void breathing_pulse(void)
{
    if (kb_backlight_config.level == 0)
      breathing_min();
    else
      breathing_max();
    breathing_halt = BREATHING_HALT_ON;
    breathing_interrupt_enable();
}

void breathing_disable(void)
{
    breathing_interrupt_disable();
    // Restore backlight level
    backlight_set(kb_backlight_config.level);
}

void breathing_self_disable(void)
{
  if (kb_backlight_config.level == 0)
    breathing_halt = BREATHING_HALT_OFF;
  else
    breathing_halt = BREATHING_HALT_ON;
}

void breathing_toggle(void) {
  if (is_breathing()){
    breathing_disable();
  } else {
    breathing_enable();
  }
}

void breathing_period_set(uint8_t value)
{
  if (!value)
    value = 1;
  breathing_period = value;
}

void breathing_period_default(void) {
  breathing_period_set(BREATHING_PERIOD);
}

void breathing_period_inc(void)
{
  breathing_period_set(breathing_period+1);
}

void breathing_period_dec(void)
{
  breathing_period_set(breathing_period-1);
}

/* To generate breathing curve in python:
 * from math import sin, pi; [int(sin(x/128.0*pi)**4*255) for x in range(128)]
 */
static const uint8_t breathing_table[BREATHING_STEPS] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 17, 20, 24, 28, 32, 36, 41, 46, 51, 57, 63, 70, 76, 83, 91, 98, 106, 113, 121, 129, 138, 146, 154, 162, 170, 178, 185, 193, 200, 207, 213, 220, 225, 231, 235, 240, 244, 247, 250, 252, 253, 254, 255, 254, 253, 252, 250, 247, 244, 240, 235, 231, 225, 220, 213, 207, 200, 193, 185, 178, 170, 162, 154, 146, 138, 129, 121, 113, 106, 98, 91, 83, 76, 70, 63, 57, 51, 46, 41, 36, 32, 28, 24, 20, 17, 15, 12, 10, 8, 6, 5, 4, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

// Use this before the cie_lightness function.
static inline uint16_t scale_backlight(uint16_t v) {
  return v / BACKLIGHT_LEVELS * kb_backlight_config.level;
}

static void breathing_callback(PWMDriver *pwmp)
{
  (void)pwmp;
  uint16_t interval = (uint16_t) breathing_period * 256 / BREATHING_STEPS;
  // resetting after one period to prevent ugly reset at overflow.
  breathing_counter = (breathing_counter + 1) % (breathing_period * 256);
  uint8_t index = breathing_counter / interval % BREATHING_STEPS;

  if (((breathing_halt == BREATHING_HALT_ON) && (index == BREATHING_STEPS / 2)) ||
      ((breathing_halt == BREATHING_HALT_OFF) && (index == BREATHING_STEPS - 1)))
  {
      breathing_interrupt_disable();
  }

  uint32_t duty = cie_lightness(scale_backlight(breathing_table[index] * 256));

  chSysLockFromISR();
  pwmEnableChannelI(
    &PWMD3,
    0,
    PWM_FRACTION_TO_WIDTH(
      &PWMD3,
      0xFFFF,
      duty
    )
  );
  chSysUnlockFromISR();
}