summaryrefslogtreecommitdiffstats
path: root/tmk_core/protocol/arm_atsam/usb/compiler.h
blob: b2ccfd73edb555bba7b0e1e2acc0e4c1ab998771 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
/**
 * \file
 *
 * \brief Commonly used includes, types and macros.
 *
 * Copyright (C) 2012-2016 Atmel Corporation. All rights reserved.
 *
 * \asf_license_start
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 *    this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 *    this list of conditions and the following disclaimer in the documentation
 *    and/or other materials provided with the distribution.
 *
 * 3. The name of Atmel may not be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * 4. This software may only be redistributed and used in connection with an
 *    Atmel microcontroller product.
 *
 * THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
 * EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 *
 * \asf_license_stop
 *
 */
/*
 * Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
 */

#ifndef UTILS_COMPILER_H_INCLUDED
#define UTILS_COMPILER_H_INCLUDED

/**
 * \defgroup group_sam0_utils Compiler abstraction layer and code utilities
 *
 * Compiler abstraction layer and code utilities for Cortex-M0+ based Atmel SAM devices.
 * This module provides various abstraction layers and utilities to make code compatible between different compilers.
 *
 * @{
 */

#if (defined __ICCARM__)
#  include <intrinsics.h>
#endif

#include <stddef.h>
//#include <parts.h>
//#include <status_codes.h>
//#include <preprocessor.h>
//#include <io.h>

#ifndef __ASSEMBLY__

#include <stdio.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>

/**
 * \def UNUSED
 * \brief Marking \a v as a unused parameter or value.
 */
#define UNUSED(v)          (void)(v)

/**
 * \def barrier
 * \brief Memory barrier
 */
#ifdef __GNUC__
#  define barrier()        asm volatile("" ::: "memory")
#else
#  define barrier()        asm ("")
#endif

/**
 * \brief Emit the compiler pragma \a arg.
 *
 * \param[in] arg  The pragma directive as it would appear after \e \#pragma
 *             (i.e. not stringified).
 */
#define COMPILER_PRAGMA(arg)          _Pragma(#arg)

/**
 * \def COMPILER_PACK_SET(alignment)
 * \brief Set maximum alignment for subsequent struct and union definitions to \a alignment.
 */
#define COMPILER_PACK_SET(alignment)  COMPILER_PRAGMA(pack(alignment))

/**
 * \def COMPILER_PACK_RESET()
 * \brief Set default alignment for subsequent struct and union definitions.
 */
#define COMPILER_PACK_RESET()         COMPILER_PRAGMA(pack())


/**
 * \brief Set aligned boundary.
 */
#if (defined __GNUC__) || (defined __CC_ARM)
#   define COMPILER_ALIGNED(a)        __attribute__((__aligned__(a)))
#elif (defined __ICCARM__)
#   define COMPILER_ALIGNED(a)        COMPILER_PRAGMA(data_alignment = a)
#endif

/**
 * \brief Set word-aligned boundary.
 */
#if (defined __GNUC__) || defined(__CC_ARM)
#define COMPILER_WORD_ALIGNED         __attribute__((__aligned__(4)))
#elif (defined __ICCARM__)
#define COMPILER_WORD_ALIGNED         COMPILER_PRAGMA(data_alignment = 4)
#endif

/**
 * \def __always_inline
 * \brief The function should always be inlined.
 *
 * This annotation instructs the compiler to ignore its inlining
 * heuristics and inline the function no matter how big it thinks it
 * becomes.
 */
#if !defined(__always_inline)
#if defined(__CC_ARM)
#  define __always_inline             __forceinline
#elif (defined __GNUC__)
#  define __always_inline             __attribute__((__always_inline__))
#elif (defined __ICCARM__)
#  define __always_inline             _Pragma("inline=forced")
#endif
#endif

/**
 * \def __no_inline
 * \brief The function should never be inlined
 *
 * This annotation instructs the compiler to ignore its inlining
 * heuristics and not inline the function no matter how small it thinks it
 * becomes.
 */
#if defined(__CC_ARM)
#  define __no_inline                 __attribute__((noinline))
#elif (defined __GNUC__)
#  define __no_inline                 __attribute__((noinline))
#elif (defined __ICCARM__)
#  define __no_inline                 _Pragma("inline=never")
#endif


/** \brief This macro is used to test fatal errors.
 *
 * The macro tests if the expression is false. If it is, a fatal error is
 * detected and the application hangs up. If \c TEST_SUITE_DEFINE_ASSERT_MACRO
 * is defined, a unit test version of the macro is used, to allow execution
 * of further tests after a false expression.
 *
 * \param[in] expr  Expression to evaluate and supposed to be nonzero.
 */
#if defined(_ASSERT_ENABLE_)
#  if defined(TEST_SUITE_DEFINE_ASSERT_MACRO)
#    include "unit_test/suite.h"
#  else
#    undef TEST_SUITE_DEFINE_ASSERT_MACRO
#    define Assert(expr) \
        {\
           if (!(expr)) asm("BKPT #0");\
        }
#  endif
#else
#  define Assert(expr) ((void) 0)
#endif

/* Define WEAK attribute */
#if defined   ( __CC_ARM   )
#   define WEAK __attribute__ ((weak))
#elif defined ( __ICCARM__ )
#   define WEAK __weak
#elif defined (  __GNUC__  )
#   define WEAK __attribute__ ((weak))
#endif

/* Define NO_INIT attribute */
#if defined   ( __CC_ARM   )
#   define NO_INIT __attribute__((zero_init))
#elif defined ( __ICCARM__ )
#   define NO_INIT __no_init
#elif defined (  __GNUC__  )
#   define NO_INIT __attribute__((section(".no_init")))
#endif

//#include "interrupt.h"

/** \name Usual Types
 * @{ */
#ifndef __cplusplus
#  if !defined(__bool_true_false_are_defined)
typedef unsigned char           bool;
#  endif
#endif
typedef uint16_t                le16_t;
typedef uint16_t                be16_t;
typedef uint32_t                le32_t;
typedef uint32_t                be32_t;
typedef uint32_t                iram_size_t;
/** @} */

/** \name Aliasing Aggregate Types
 * @{ */

/** 16-bit union. */
typedef union
{
  int16_t  s16;
  uint16_t u16;
  int8_t   s8[2];
  uint8_t  u8[2];
} Union16;

/** 32-bit union. */
typedef union
{
  int32_t  s32;
  uint32_t u32;
  int16_t  s16[2];
  uint16_t u16[2];
  int8_t   s8[4];
  uint8_t  u8[4];
} Union32;

/** 64-bit union. */
typedef union
{
  int64_t  s64;
  uint64_t u64;
  int32_t  s32[2];
  uint32_t u32[2];
  int16_t  s16[4];
  uint16_t u16[4];
  int8_t   s8[8];
  uint8_t  u8[8];
} Union64;

/** Union of pointers to 64-, 32-, 16- and 8-bit unsigned integers. */
typedef union
{
  int64_t  *s64ptr;
  uint64_t *u64ptr;
  int32_t  *s32ptr;
  uint32_t *u32ptr;
  int16_t  *s16ptr;
  uint16_t *u16ptr;
  int8_t   *s8ptr;
  uint8_t  *u8ptr;
} UnionPtr;

/** Union of pointers to volatile 64-, 32-, 16- and 8-bit unsigned integers. */
typedef union
{
  volatile int64_t  *s64ptr;
  volatile uint64_t *u64ptr;
  volatile int32_t  *s32ptr;
  volatile uint32_t *u32ptr;
  volatile int16_t  *s16ptr;
  volatile uint16_t *u16ptr;
  volatile int8_t   *s8ptr;
  volatile uint8_t  *u8ptr;
} UnionVPtr;

/** Union of pointers to constant 64-, 32-, 16- and 8-bit unsigned integers. */
typedef union
{
  const int64_t  *s64ptr;
  const uint64_t *u64ptr;
  const int32_t  *s32ptr;
  const uint32_t *u32ptr;
  const int16_t  *s16ptr;
  const uint16_t *u16ptr;
  const int8_t   *s8ptr;
  const uint8_t  *u8ptr;
} UnionCPtr;

/** Union of pointers to constant volatile 64-, 32-, 16- and 8-bit unsigned integers. */
typedef union
{
  const volatile int64_t  *s64ptr;
  const volatile uint64_t *u64ptr;
  const volatile int32_t  *s32ptr;
  const volatile uint32_t *u32ptr;
  const volatile int16_t  *s16ptr;
  const volatile uint16_t *u16ptr;
  const volatile int8_t   *s8ptr;
  const volatile uint8_t  *u8ptr;
} UnionCVPtr;

/** Structure of pointers to 64-, 32-, 16- and 8-bit unsigned integers. */
typedef struct
{
  int64_t  *s64ptr;
  uint64_t *u64ptr;
  int32_t  *s32ptr;
  uint32_t *u32ptr;
  int16_t  *s16ptr;
  uint16_t *u16ptr;
  int8_t   *s8ptr;
  uint8_t  *u8ptr;
} StructPtr;

/** Structure of pointers to volatile 64-, 32-, 16- and 8-bit unsigned integers. */
typedef struct
{
  volatile int64_t  *s64ptr;
  volatile uint64_t *u64ptr;
  volatile int32_t  *s32ptr;
  volatile uint32_t *u32ptr;
  volatile int16_t  *s16ptr;
  volatile uint16_t *u16ptr;
  volatile int8_t   *s8ptr;
  volatile uint8_t  *u8ptr;
} StructVPtr;

/** Structure of pointers to constant 64-, 32-, 16- and 8-bit unsigned integers. */
typedef struct
{
  const int64_t  *s64ptr;
  const uint64_t *u64ptr;
  const int32_t  *s32ptr;
  const uint32_t *u32ptr;
  const int16_t  *s16ptr;
  const uint16_t *u16ptr;
  const int8_t   *s8ptr;
  const uint8_t  *u8ptr;
} StructCPtr;

/** Structure of pointers to constant volatile 64-, 32-, 16- and 8-bit unsigned integers. */
typedef struct
{
  const volatile int64_t  *s64ptr;
  const volatile uint64_t *u64ptr;
  const volatile int32_t  *s32ptr;
  const volatile uint32_t *u32ptr;
  const volatile int16_t  *s16ptr;
  const volatile uint16_t *u16ptr;
  const volatile int8_t   *s8ptr;
  const volatile uint8_t  *u8ptr;
} StructCVPtr;

/** @} */

#endif  /* #ifndef __ASSEMBLY__ */

/** \name Usual Constants
 * @{ */
//kmod #define DISABLE   0
//kmod #define ENABLE    1

#ifndef __cplusplus
#  if !defined(__bool_true_false_are_defined)
#    define false     0
#    define true      1
#  endif
#endif
/** @} */

#ifndef __ASSEMBLY__

/** \name Optimization Control
 * @{ */

/**
 * \def likely(exp)
 * \brief The expression \a exp is likely to be true
 */
#if !defined(likely) || defined(__DOXYGEN__)
#   define likely(exp)    (exp)
#endif

/**
 * \def unlikely(exp)
 * \brief The expression \a exp is unlikely to be true
 */
#if !defined(unlikely) || defined(__DOXYGEN__)
#   define unlikely(exp)  (exp)
#endif

/**
 * \def is_constant(exp)
 * \brief Determine if an expression evaluates to a constant value.
 *
 * \param[in] exp Any expression
 *
 * \return true if \a exp is constant, false otherwise.
 */
#if (defined __GNUC__) || (defined __CC_ARM)
#   define is_constant(exp)       __builtin_constant_p(exp)
#else
#   define is_constant(exp)       (0)
#endif

/** @} */

/** \name Bit-Field Handling
 * @{ */

/** \brief Reads the bits of a value specified by a given bit-mask.
 *
 * \param[in] value Value to read bits from.
 * \param[in] mask  Bit-mask indicating bits to read.
 *
 * \return Read bits.
 */
#define Rd_bits( value, mask)        ((value) & (mask))

/** \brief Writes the bits of a C lvalue specified by a given bit-mask.
 *
 * \param[in] lvalue  C lvalue to write bits to.
 * \param[in] mask    Bit-mask indicating bits to write.
 * \param[in] bits    Bits to write.
 *
 * \return Resulting value with written bits.
 */
#define Wr_bits(lvalue, mask, bits)  ((lvalue) = ((lvalue) & ~(mask)) |\
                                                 ((bits  ) &  (mask)))

/** \brief Tests the bits of a value specified by a given bit-mask.
 *
 * \param[in] value Value of which to test bits.
 * \param[in] mask  Bit-mask indicating bits to test.
 *
 * \return \c 1 if at least one of the tested bits is set, else \c 0.
 */
#define Tst_bits( value, mask)  (Rd_bits(value, mask) != 0)

/** \brief Clears the bits of a C lvalue specified by a given bit-mask.
 *
 * \param[in] lvalue  C lvalue of which to clear bits.
 * \param[in] mask    Bit-mask indicating bits to clear.
 *
 * \return Resulting value with cleared bits.
 */
#define Clr_bits(lvalue, mask)  ((lvalue) &= ~(mask))

/** \brief Sets the bits of a C lvalue specified by a given bit-mask.
 *
 * \param[in] lvalue  C lvalue of which to set bits.
 * \param[in] mask    Bit-mask indicating bits to set.
 *
 * \return Resulting value with set bits.
 */
#define Set_bits(lvalue, mask)  ((lvalue) |=  (mask))

/** \brief Toggles the bits of a C lvalue specified by a given bit-mask.
 *
 * \param[in] lvalue  C lvalue of which to toggle bits.
 * \param[in] mask    Bit-mask indicating bits to toggle.
 *
 * \return Resulting value with toggled bits.
 */
#define Tgl_bits(lvalue, mask)  ((lvalue) ^=  (mask))

/** \brief Reads the bit-field of a value specified by a given bit-mask.
 *
 * \param[in] value Value to read a bit-field from.
 * \param[in] mask  Bit-mask indicating the bit-field to read.
 *
 * \return Read bit-field.
 */
#define Rd_bitfield( value, mask)           (Rd_bits( value, mask) >> ctz(mask))

/** \brief Writes the bit-field of a C lvalue specified by a given bit-mask.
 *
 * \param[in] lvalue    C lvalue to write a bit-field to.
 * \param[in] mask      Bit-mask indicating the bit-field to write.
 * \param[in] bitfield  Bit-field to write.
 *
 * \return Resulting value with written bit-field.
 */
#define Wr_bitfield(lvalue, mask, bitfield) (Wr_bits(lvalue, mask, (uint32_t)(bitfield) << ctz(mask)))

/** @} */


/** \name Zero-Bit Counting
 *
 * Under GCC, __builtin_clz and __builtin_ctz behave like macros when
 * applied to constant expressions (values known at compile time), so they are
 * more optimized than the use of the corresponding assembly instructions and
 * they can be used as constant expressions e.g. to initialize objects having
 * static storage duration, and like the corresponding assembly instructions
 * when applied to non-constant expressions (values unknown at compile time), so
 * they are more optimized than an assembly periphrasis. Hence, clz and ctz
 * ensure a possible and optimized behavior for both constant and non-constant
 * expressions.
 *
 * @{ */

/** \brief Counts the leading zero bits of the given value considered as a 32-bit integer.
 *
 * \param[in] u Value of which to count the leading zero bits.
 *
 * \return The count of leading zero bits in \a u.
 */
#if (defined __GNUC__) || (defined __CC_ARM)
#   define clz(u)              ((u) ? __builtin_clz(u) : 32)
#else
#   define clz(u)              (((u) == 0)          ? 32 : \
                                ((u) & (1ul << 31)) ?  0 : \
                                ((u) & (1ul << 30)) ?  1 : \
                                ((u) & (1ul << 29)) ?  2 : \
                                ((u) & (1ul << 28)) ?  3 : \
                                ((u) & (1ul << 27)) ?  4 : \
                                ((u) & (1ul << 26)) ?  5 : \
                                ((u) & (1ul << 25)) ?  6 : \
                                ((u) & (1ul << 24)) ?  7 : \
                                ((u) & (1ul << 23)) ?  8 : \
                                ((u) & (1ul << 22)) ?  9 : \
                                ((u) & (1ul << 21)) ? 10 : \
                                ((u) & (1ul << 20)) ? 11 : \
                                ((u) & (1ul << 19)) ? 12 : \
                                ((u) & (1ul << 18)) ? 13 : \
                                ((u) & (1ul << 17)) ? 14 : \
                                ((u) & (1ul << 16)) ? 15 : \
                                ((u) & (1ul << 15)) ? 16 : \
                                ((u) & (1ul << 14)) ? 17 : \
                                ((u) & (1ul << 13)) ? 18 : \
                                ((u) & (1ul << 12)) ? 19 : \
                                ((u) & (1ul << 11)) ? 20 : \
                                ((u) & (1ul << 10)) ? 21 : \
                                ((u) & (1ul <<  9)) ? 22 : \
                                ((u) & (1ul <<  8)) ? 23 : \
                                ((u) & (1ul <<  7)) ? 24 : \
                                ((u) & (1ul <<  6)) ? 25 : \
                                ((u) & (1ul <<  5)) ? 26 : \
                                ((u) & (1ul <<  4)) ? 27 : \
                                ((u) & (1ul <<  3)) ? 28 : \
                                ((u) & (1ul <<  2)) ? 29 : \
                                ((u) & (1ul <<  1)) ? 30 : \
                                31)
#endif

/** \brief Counts the trailing zero bits of the given value considered as a 32-bit integer.
 *
 * \param[in] u Value of which to count the trailing zero bits.
 *
 * \return The count of trailing zero bits in \a u.
 */
#if (defined __GNUC__) || (defined __CC_ARM)
#   define ctz(u)              ((u) ? __builtin_ctz(u) : 32)
#else
#   define ctz(u)              ((u) & (1ul <<  0) ?  0 : \
                                (u) & (1ul <<  1) ?  1 : \
                                (u) & (1ul <<  2) ?  2 : \
                                (u) & (1ul <<  3) ?  3 : \
                                (u) & (1ul <<  4) ?  4 : \
                                (u) & (1ul <<  5) ?  5 : \
                                (u) & (1ul <<  6) ?  6 : \
                                (u) & (1ul <<  7) ?  7 : \
                                (u) & (1ul <<  8) ?  8 : \
                                (u) & (1ul <<  9) ?  9 : \
                                (u) & (1ul << 10) ? 10 : \
                                (u) & (1ul << 11) ? 11 : \
                                (u) & (1ul << 12) ? 12 : \
                                (u) & (1ul << 13) ? 13 : \
                                (u) & (1ul << 14) ? 14 : \
                                (u) & (1ul << 15) ? 15 : \
                                (u) & (1ul << 16) ? 16 : \
                                (u) & (1ul << 17) ? 17 : \
                                (u) & (1ul << 18) ? 18 : \
                                (u) & (1ul << 19) ? 19 : \
                                (u) & (1ul << 20) ? 20 : \
                                (u) & (1ul << 21) ? 21 : \
                                (u) & (1ul << 22) ? 22 : \
                                (u) & (1ul << 23) ? 23 : \
                                (u) & (1ul << 24) ? 24 : \
                                (u) & (1ul << 25) ? 25 : \
                                (u) & (1ul << 26) ? 26 : \
                                (u) & (1ul << 27) ? 27 : \
                                (u) & (1ul << 28) ? 28 : \
                                (u) & (1ul << 29) ? 29 : \
                                (u) & (1ul << 30) ? 30 : \
                                (u) & (1ul << 31) ? 31 : \
                                32)
#endif

/** @} */


/** \name Bit Reversing
 * @{ */

/** \brief Reverses the bits of \a u8.
 *
 * \param[in] u8  U8 of which to reverse the bits.
 *
 * \return Value resulting from \a u8 with reversed bits.
 */
#define bit_reverse8(u8)    ((U8)(bit_reverse32((U8)(u8)) >> 24))

/** \brief Reverses the bits of \a u16.
 *
 * \param[in] u16 U16 of which to reverse the bits.
 *
 * \return Value resulting from \a u16 with reversed bits.
 */
#define bit_reverse16(u16)  ((uint16_t)(bit_reverse32((uint16_t)(u16)) >> 16))

/** \brief Reverses the bits of \a u32.
 *
 * \param[in] u32 U32 of which to reverse the bits.
 *
 * \return Value resulting from \a u32 with reversed bits.
 */
#define bit_reverse32(u32)   __RBIT(u32)

/** \brief Reverses the bits of \a u64.
 *
 * \param[in] u64 U64 of which to reverse the bits.
 *
 * \return Value resulting from \a u64 with reversed bits.
 */
#define bit_reverse64(u64)  ((uint64_t)(((uint64_t)bit_reverse32((uint64_t)(u64) >> 32)) |\
                                   ((uint64_t)bit_reverse32((uint64_t)(u64)) << 32)))

/** @} */


/** \name Alignment
 * @{ */

/** \brief Tests alignment of the number \a val with the \a n boundary.
 *
 * \param[in] val Input value.
 * \param[in] n   Boundary.
 *
 * \return \c 1 if the number \a val is aligned with the \a n boundary, else \c 0.
 */
#define Test_align(val, n) (!Tst_bits( val, (n) - 1     )   )

/** \brief Gets alignment of the number \a val with respect to the \a n boundary.
 *
 * \param[in] val Input value.
 * \param[in] n   Boundary.
 *
 * \return Alignment of the number \a val with respect to the \a n boundary.
 */
#define Get_align(val, n) (  Rd_bits( val, (n) - 1     )   )

/** \brief Sets alignment of the lvalue number \a lval to \a alg with respect to the \a n boundary.
 *
 * \param[in] lval  Input/output lvalue.
 * \param[in] n     Boundary.
 * \param[in] alg   Alignment.
 *
 * \return New value of \a lval resulting from its alignment set to \a alg with respect to the \a n boundary.
 */
#define Set_align(lval, n, alg) (  Wr_bits(lval, (n) - 1, alg)   )

/** \brief Aligns the number \a val with the upper \a n boundary.
 *
 * \param[in] val Input value.
 * \param[in] n   Boundary.
 *
 * \return Value resulting from the number \a val aligned with the upper \a n boundary.
 */
#define Align_up(  val, n) (((val) + ((n) - 1)) & ~((n) - 1))

/** \brief Aligns the number \a val with the lower \a n boundary.
 *
 * \param[in] val Input value.
 * \param[in] n   Boundary.
 *
 * \return Value resulting from the number \a val aligned with the lower \a n boundary.
 */
#define Align_down(val, n) ( (val)              & ~((n) - 1))

/** @} */


/** \name Mathematics
 *
 * The same considerations as for clz and ctz apply here but GCC does not
 * provide built-in functions to access the assembly instructions abs, min and
 * max and it does not produce them by itself in most cases, so two sets of
 * macros are defined here:
 *   - Abs, Min and Max to apply to constant expressions (values known at
 *     compile time);
 *   - abs, min and max to apply to non-constant expressions (values unknown at
 *     compile time), abs is found in stdlib.h.
 *
 * @{ */

/** \brief Takes the absolute value of \a a.
 *
 * \param[in] a Input value.
 *
 * \return Absolute value of \a a.
 *
 * \note More optimized if only used with values known at compile time.
 */
#define Abs(a)              (((a) <  0 ) ? -(a) : (a))

#ifndef __cplusplus
/** \brief Takes the minimal value of \a a and \a b.
 *
 * \param[in] a Input value.
 * \param[in] b Input value.
 *
 * \return Minimal value of \a a and \a b.
 *
 * \note More optimized if only used with values known at compile time.
 */
#define Min(a, b)           (((a) < (b)) ?  (a) : (b))

/** \brief Takes the maximal value of \a a and \a b.
 *
 * \param[in] a Input value.
 * \param[in] b Input value.
 *
 * \return Maximal value of \a a and \a b.
 *
 * \note More optimized if only used with values known at compile time.
 */
#define Max(a, b)           (((a) > (b)) ?  (a) : (b))

/** \brief Takes the minimal value of \a a and \a b.
 *
 * \param[in] a Input value.
 * \param[in] b Input value.
 *
 * \return Minimal value of \a a and \a b.
 *
 * \note More optimized if only used with values unknown at compile time.
 */
#define min(a, b)   Min(a, b)

/** \brief Takes the maximal value of \a a and \a b.
 *
 * \param[in] a Input value.
 * \param[in] b Input value.
 *
 * \return Maximal value of \a a and \a b.
 *
 * \note More optimized if only used with values unknown at compile time.
 */
#define max(a, b)   Max(a, b)
#endif

/** @} */


/** \brief Calls the routine at address \a addr.
 *
 * It generates a long call opcode.
 *
 * For example, `Long_call(0x80000000)' generates a software reset on a UC3 if
 * it is invoked from the CPU supervisor mode.
 *
 * \param[in] addr  Address of the routine to call.
 *
 * \note It may be used as a long jump opcode in some special cases.
 */
#define Long_call(addr)                   ((*(void (*)(void))(addr))())


/** \name MCU Endianism Handling
 *  ARM is MCU little endian.
 *
 * @{ */
#define  BE16(x)        swap16(x)
#define  LE16(x)        (x)

#define  le16_to_cpu(x) (x)
#define  cpu_to_le16(x) (x)
#define  LE16_TO_CPU(x) (x)
#define  CPU_TO_LE16(x) (x)

#define  be16_to_cpu(x) swap16(x)
#define  cpu_to_be16(x) swap16(x)
#define  BE16_TO_CPU(x) swap16(x)
#define  CPU_TO_BE16(x) swap16(x)

#define  le32_to_cpu(x) (x)
#define  cpu_to_le32(x) (x)
#define  LE32_TO_CPU(x) (x)
#define  CPU_TO_LE32(x) (x)

#define  be32_to_cpu(x) swap32(x)
#define  cpu_to_be32(x) swap32(x)
#define  BE32_TO_CPU(x) swap32(x)
#define  CPU_TO_BE32(x) swap32(x)
/** @} */


/** \name Endianism Conversion
 *
 * The same considerations as for clz and ctz apply here but GCC's
 * __builtin_bswap_32 and __builtin_bswap_64 do not behave like macros when
 * applied to constant expressions, so two sets of macros are defined here:
 *   - Swap16, Swap32 and Swap64 to apply to constant expressions (values known
 *     at compile time);
 *   - swap16, swap32 and swap64 to apply to non-constant expressions (values
 *     unknown at compile time).
 *
 * @{ */

/** \brief Toggles the endianism of \a u16 (by swapping its bytes).
 *
 * \param[in] u16 U16 of which to toggle the endianism.
 *
 * \return Value resulting from \a u16 with toggled endianism.
 *
 * \note More optimized if only used with values known at compile time.
 */
#define Swap16(u16) ((uint16_t)(((uint16_t)(u16) >> 8) |\
                           ((uint16_t)(u16) << 8)))

/** \brief Toggles the endianism of \a u32 (by swapping its bytes).
 *
 * \param[in] u32 U32 of which to toggle the endianism.
 *
 * \return Value resulting from \a u32 with toggled endianism.
 *
 * \note More optimized if only used with values known at compile time.
 */
#define Swap32(u32) ((uint32_t)(((uint32_t)Swap16((uint32_t)(u32) >> 16)) |\
                           ((uint32_t)Swap16((uint32_t)(u32)) << 16)))

/** \brief Toggles the endianism of \a u64 (by swapping its bytes).
 *
 * \param[in] u64 U64 of which to toggle the endianism.
 *
 * \return Value resulting from \a u64 with toggled endianism.
 *
 * \note More optimized if only used with values known at compile time.
 */
#define Swap64(u64) ((uint64_t)(((uint64_t)Swap32((uint64_t)(u64) >> 32)) |\
                           ((uint64_t)Swap32((uint64_t)(u64)) << 32)))

/** \brief Toggles the endianism of \a u16 (by swapping its bytes).
 *
 * \param[in] u16 U16 of which to toggle the endianism.
 *
 * \return Value resulting from \a u16 with toggled endianism.
 *
 * \note More optimized if only used with values unknown at compile time.
 */
#define swap16(u16) Swap16(u16)

/** \brief Toggles the endianism of \a u32 (by swapping its bytes).
 *
 * \param[in] u32 U32 of which to toggle the endianism.
 *
 * \return Value resulting from \a u32 with toggled endianism.
 *
 * \note More optimized if only used with values unknown at compile time.
 */
#if (defined __GNUC__)
#  define swap32(u32) ((uint32_t)__builtin_bswap32((uint32_t)(u32)))
#else
#  define swap32(u32) Swap32(u32)
#endif

/** \brief Toggles the endianism of \a u64 (by swapping its bytes).
 *
 * \param[in] u64 U64 of which to toggle the endianism.
 *
 * \return Value resulting from \a u64 with toggled endianism.
 *
 * \note More optimized if only used with values unknown at compile time.
 */
#if (defined __GNUC__)
#  define swap64(u64) ((uint64_t)__builtin_bswap64((uint64_t)(u64)))
#else
#  define swap64(u64) ((uint64_t)(((uint64_t)swap32((uint64_t)(u64) >> 32)) |\
                         ((uint64_t)swap32((uint64_t)(u64)) << 32)))
#endif

/** @} */


/** \name Target Abstraction
 *
 * @{ */

#define _GLOBEXT_           extern      /**< extern storage-class specifier. */
#define _CONST_TYPE_        const       /**< const type qualifier. */
#define _MEM_TYPE_SLOW_                 /**< Slow memory type. */
#define _MEM_TYPE_MEDFAST_              /**< Fairly fast memory type. */
#define _MEM_TYPE_FAST_                 /**< Fast memory type. */

#define memcmp_ram2ram      memcmp      /**< Target-specific memcmp of RAM to RAM. */
#define memcmp_code2ram     memcmp      /**< Target-specific memcmp of RAM to NVRAM. */
#define memcpy_ram2ram      memcpy      /**< Target-specific memcpy from RAM to RAM. */
#define memcpy_code2ram     memcpy      /**< Target-specific memcpy from NVRAM to RAM. */

/** @} */

/**
 * \brief Calculate \f$ \left\lceil \frac{a}{b} \right\rceil \f$ using
 * integer arithmetic.
 *
 * \param[in] a An integer
 * \param[in] b Another integer
 *
 * \return (\a a / \a b) rounded up to the nearest integer.
 */
#define div_ceil(a, b)      (((a) + (b) - 1) / (b))

#endif  /* #ifndef __ASSEMBLY__ */
#ifdef __ICCARM__
/** \name Compiler Keywords
 *
 * Port of some keywords from GCC to IAR Embedded Workbench.
 *
 * @{ */

#define __asm__             asm
#define __inline__          inline
#define __volatile__

/** @} */

#endif

#define FUNC_PTR                            void *
/**
 * \def unused
 * \brief Marking \a v as a unused parameter or value.
 */
#define unused(v)          do { (void)(v); } while(0)

/* Define RAMFUNC attribute */
#if defined   ( __CC_ARM   ) /* Keil uVision 4 */
#   define RAMFUNC __attribute__ ((section(".ramfunc")))
#elif defined ( __ICCARM__ ) /* IAR Ewarm 5.41+ */
#   define RAMFUNC __ramfunc
#elif defined (  __GNUC__  ) /* GCC CS3 2009q3-68 */
#   define RAMFUNC __attribute__ ((section(".ramfunc")))
#endif

/* Define OPTIMIZE_HIGH attribute */
#if defined   ( __CC_ARM   ) /* Keil uVision 4 */
#   define OPTIMIZE_HIGH _Pragma("O3")
#elif defined ( __ICCARM__ ) /* IAR Ewarm 5.41+ */
#   define OPTIMIZE_HIGH _Pragma("optimize=high")
#elif defined (  __GNUC__  ) /* GCC CS3 2009q3-68 */
#   define OPTIMIZE_HIGH __attribute__((optimize("s")))
#endif
//kmod #define PASS      0
//kmod #define FAIL      1
//kmod #define LOW       0
//kmod #define HIGH      1

typedef int8_t                  S8 ;  //!< 8-bit signed integer.
typedef uint8_t                 U8 ;  //!< 8-bit unsigned integer.
typedef int16_t                 S16;  //!< 16-bit signed integer.
typedef uint16_t                U16;  //!< 16-bit unsigned integer.
typedef int32_t                 S32;  //!< 32-bit signed integer.
typedef uint32_t                U32;  //!< 32-bit unsigned integer.
typedef int64_t                 S64;  //!< 64-bit signed integer.
typedef uint64_t                U64;  //!< 64-bit unsigned integer.
typedef float                   F32;  //!< 32-bit floating-point number.
typedef double                  F64;  //!< 64-bit floating-point number.

#define  MSB(u16)       (((U8  *)&(u16))[1]) //!< Most significant byte of \a u16.
#define  LSB(u16)       (((U8  *)&(u16))[0]) //!< Least significant byte of \a u16.

#define  MSH(u32)       (((U16 *)&(u32))[1]) //!< Most significant half-word of \a u32.
#define  LSH(u32)       (((U16 *)&(u32))[0]) //!< Least significant half-word of \a u32.
#define  MSB0W(u32)     (((U8  *)&(u32))[3]) //!< Most significant byte of 1st rank of \a u32.
#define  MSB1W(u32)     (((U8  *)&(u32))[2]) //!< Most significant byte of 2nd rank of \a u32.
#define  MSB2W(u32)     (((U8  *)&(u32))[1]) //!< Most significant byte of 3rd rank of \a u32.
#define  MSB3W(u32)     (((U8  *)&(u32))[0]) //!< Most significant byte of 4th rank of \a u32.
#define  LSB3W(u32)     MSB0W(u32)           //!< Least significant byte of 4th rank of \a u32.
#define  LSB2W(u32)     MSB1W(u32)           //!< Least significant byte of 3rd rank of \a u32.
#define  LSB1W(u32)     MSB2W(u32)           //!< Least significant byte of 2nd rank of \a u32.
#define  LSB0W(u32)     MSB3W(u32)           //!< Least significant byte of 1st rank of \a u32.

#define  MSW(u64)       (((U32 *)&(u64))[1]) //!< Most significant word of \a u64.
#define  LSW(u64)       (((U32 *)&(u64))[0]) //!< Least significant word of \a u64.
#define  MSH0(u64)      (((U16 *)&(u64))[3]) //!< Most significant half-word of 1st rank of \a u64.
#define  MSH1(u64)      (((U16 *)&(u64))[2]) //!< Most significant half-word of 2nd rank of \a u64.
#define  MSH2(u64)      (((U16 *)&(u64))[1]) //!< Most significant half-word of 3rd rank of \a u64.
#define  MSH3(u64)      (((U16 *)&(u64))[0]) //!< Most significant half-word of 4th rank of \a u64.
#define  LSH3(u64)      MSH0(u64)            //!< Least significant half-word of 4th rank of \a u64.
#define  LSH2(u64)      MSH1(u64)            //!< Least significant half-word of 3rd rank of \a u64.
#define  LSH1(u64)      MSH2(u64)            //!< Least significant half-word of 2nd rank of \a u64.
#define  LSH0(u64)      MSH3(u64)            //!< Least significant half-word of 1st rank of \a u64.
#define  MSB0D(u64)     (((U8  *)&(u64))[7]) //!< Most significant byte of 1st rank of \a u64.
#define  MSB1D(u64)     (((U8  *)&(u64))[6]) //!< Most significant byte of 2nd rank of \a u64.
#define  MSB2D(u64)     (((U8  *)&(u64))[5]) //!< Most significant byte of 3rd rank of \a u64.
#define  MSB3D(u64)     (((U8  *)&(u64))[4]) //!< Most significant byte of 4th rank of \a u64.
#define  MSB4D(u64)     (((U8  *)&(u64))[3]) //!< Most significant byte of 5th rank of \a u64.
#define  MSB5D(u64)     (((U8  *)&(u64))[2]) //!< Most significant byte of 6th rank of \a u64.
#define  MSB6D(u64)     (((U8  *)&(u64))[1]) //!< Most significant byte of 7th rank of \a u64.
#define  MSB7D(u64)     (((U8  *)&(u64))[0]) //!< Most significant byte of 8th rank of \a u64.
#define  LSB7D(u64)     MSB0D(u64)           //!< Least significant byte of 8th rank of \a u64.
#define  LSB6D(u64)     MSB1D(u64)           //!< Least significant byte of 7th rank of \a u64.
#define  LSB5D(u64)     MSB2D(u64)           //!< Least significant byte of 6th rank of \a u64.
#define  LSB4D(u64)     MSB3D(u64)           //!< Least significant byte of 5th rank of \a u64.
#define  LSB3D(u64)     MSB4D(u64)           //!< Least significant byte of 4th rank of \a u64.
#define  LSB2D(u64)     MSB5D(u64)           //!< Least significant byte of 3rd rank of \a u64.
#define  LSB1D(u64)     MSB6D(u64)           //!< Least significant byte of 2nd rank of \a u64.
#define  LSB0D(u64)     MSB7D(u64)           //!< Least significant byte of 1st rank of \a u64.

#define LSB0(u32)           LSB0W(u32)  //!< Least significant byte of 1st rank of \a u32.
#define LSB1(u32)           LSB1W(u32)  //!< Least significant byte of 2nd rank of \a u32.
#define LSB2(u32)           LSB2W(u32)  //!< Least significant byte of 3rd rank of \a u32.
#define LSB3(u32)           LSB3W(u32)  //!< Least significant byte of 4th rank of \a u32.
#define MSB3(u32)           MSB3W(u32)  //!< Most significant byte of 4th rank of \a u32.
#define MSB2(u32)           MSB2W(u32)  //!< Most significant byte of 3rd rank of \a u32.
#define MSB1(u32)           MSB1W(u32)  //!< Most significant byte of 2nd rank of \a u32.
#define MSB0(u32)           MSB0W(u32)  //!< Most significant byte of 1st rank of \a u32.

#if defined(__ICCARM__)
#define SHORTENUM           __packed
#elif defined(__GNUC__)
#define SHORTENUM           __attribute__((packed))
#endif

/* No operation */
#if defined(__ICCARM__)
#define nop()               __no_operation()
#elif defined(__GNUC__)
#define nop()               (__NOP())
#endif

#define FLASH_DECLARE(x)  const x
#define FLASH_EXTERN(x) extern const x
#define PGM_READ_BYTE(x) *(x)
#define PGM_READ_WORD(x) *(x)
#define MEMCPY_ENDIAN memcpy
#define PGM_READ_BLOCK(dst, src, len) memcpy((dst), (src), (len))

/*Defines the Flash Storage for the request and response of MAC*/
#define CMD_ID_OCTET    (0)

/* Converting of values from CPU endian to little endian. */
#define CPU_ENDIAN_TO_LE16(x)   (x)
#define CPU_ENDIAN_TO_LE32(x)   (x)
#define CPU_ENDIAN_TO_LE64(x)   (x)

/* Converting of values from little endian to CPU endian. */
#define LE16_TO_CPU_ENDIAN(x)   (x)
#define LE32_TO_CPU_ENDIAN(x)   (x)
#define LE64_TO_CPU_ENDIAN(x)   (x)

/* Converting of constants from little endian to CPU endian. */
#define CLE16_TO_CPU_ENDIAN(x)  (x)
#define CLE32_TO_CPU_ENDIAN(x)  (x)
#define CLE64_TO_CPU_ENDIAN(x)  (x)

/* Converting of constants from CPU endian to little endian. */
#define CCPU_ENDIAN_TO_LE16(x)  (x)
#define CCPU_ENDIAN_TO_LE32(x)  (x)
#define CCPU_ENDIAN_TO_LE64(x)  (x)

#define ADDR_COPY_DST_SRC_16(dst, src)  ((dst) = (src))
#define ADDR_COPY_DST_SRC_64(dst, src)  ((dst) = (src))

/**
 * @brief Converts a 64-Bit value into  a 8 Byte array
 *
 * @param[in] value 64-Bit value
 * @param[out] data Pointer to the 8 Byte array to be updated with 64-Bit value
 * @ingroup apiPalApi
 */
static inline void convert_64_bit_to_byte_array(uint64_t value, uint8_t *data)
{
    uint8_t index = 0;

    while (index < 8)
    {
        data[index++] = value & 0xFF;
        value = value >> 8;
    }
}

/**
 * @brief Converts a 16-Bit value into  a 2 Byte array
 *
 * @param[in] value 16-Bit value
 * @param[out] data Pointer to the 2 Byte array to be updated with 16-Bit value
 * @ingroup apiPalApi
 */
static inline void convert_16_bit_to_byte_array(uint16_t value, uint8_t *data)
{
    data[0] = value & 0xFF;
    data[1] = (value >> 8) & 0xFF;
}

/* Converts a 16-Bit value into a 2 Byte array */
static inline void convert_spec_16_bit_to_byte_array(uint16_t value, uint8_t *data)
{
    data[0] = value & 0xFF;
    data[1] = (value >> 8) & 0xFF;
}

/* Converts a 16-Bit value into a 2 Byte array */
static inline void convert_16_bit_to_byte_address(uint16_t value, uint8_t *data)
{
    data[0] = value & 0xFF;
    data[1] = (value >> 8) & 0xFF;
}

/*
 * @brief Converts a 2 Byte array into a 16-Bit value
 *
 * @param data Specifies the pointer to the 2 Byte array
 *
 * @return 16-Bit value
 * @ingroup apiPalApi
 */
static inline uint16_t convert_byte_array_to_16_bit(uint8_t *data)
{
    return (data[0] | ((uint16_t)data[1] << 8));
}

/* Converts a 4 Byte array into a 32-Bit value */
static inline uint32_t convert_byte_array_to_32_bit(uint8_t *data)
{
    union
    {
        uint32_t u32;
        uint8_t u8[4];
    } long_addr;

    uint8_t index;

    for (index = 0; index < 4; index++)
    {
        long_addr.u8[index] = *data++;
    }

    return long_addr.u32;
}

/**
 * @brief Converts a 8 Byte array into a 64-Bit value
 *
 * @param data Specifies the pointer to the 8 Byte array
 *
 * @return 64-Bit value
 * @ingroup apiPalApi
 */
static inline uint64_t convert_byte_array_to_64_bit(uint8_t *data)
{
    union
    {
        uint64_t u64;
        uint8_t u8[8];
    } long_addr;

    uint8_t index;

    for (index = 0; index < 8; index++)
    {
        long_addr.u8[index] = *data++;
    }

    return long_addr.u64;
}

/** @} */

#endif /* UTILS_COMPILER_H_INCLUDED */