summaryrefslogtreecommitdiffstats
path: root/lib/DHT_sensor_library/DHT.cpp
blob: efa1d392498a430364ef5fc58ad083eed8cc3815 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
/* DHT library 

MIT license
written by Adafruit Industries
*/

#include "DHT.h"

DHT::DHT(uint8_t pin, uint8_t type, uint8_t count) {
  _pin = pin;
  _type = type;
  _count = count;
  firstreading = true;
}

void DHT::begin(void) {
  // set up the pins!
  pinMode(_pin, INPUT);
  digitalWrite(_pin, HIGH);
  _lastreadtime = 0;
}

//boolean S == Scale.  True == Farenheit; False == Celcius
float DHT::readTemperature(bool S) {
  float f;

  if (read()) {
    switch (_type) {
    case DHT11:
      f = data[2];
      if(S)
      	f = convertCtoF(f);
      	
      return f;
    case DHT22:
    case DHT21:
      f = data[2] & 0x7F;
      f *= 256;
      f += data[3];
      f /= 10;
      if (data[2] & 0x80)
	f *= -1;
      if(S)
	f = convertCtoF(f);

      return f;
    }
  }
  Serial.print("Read fail");
  return NAN;
}

float DHT::convertCtoF(float c) {
	return c * 9 / 5 + 32;
}

float DHT::readHumidity(void) {
  float f;
  if (read()) {
    switch (_type) {
    case DHT11:
      f = data[0];
      return f;
    case DHT22:
    case DHT21:
      f = data[0];
      f *= 256;
      f += data[1];
      f /= 10;
      return f;
    }
  }
  Serial.print("Read fail");
  return NAN;
}


boolean DHT::read(void) {
  uint8_t laststate = HIGH;
  uint8_t counter = 0;
  uint8_t j = 0, i;
  unsigned long currenttime;

  // pull the pin high and wait 250 milliseconds
  digitalWrite(_pin, HIGH);
  delay(250);

  currenttime = millis();
  if (currenttime < _lastreadtime) {
    // ie there was a rollover
    _lastreadtime = 0;
  }
  if (!firstreading && ((currenttime - _lastreadtime) < 2000)) {
    return true; // return last correct measurement
    //delay(2000 - (currenttime - _lastreadtime));
  }
  firstreading = false;
  /*
    Serial.print("Currtime: "); Serial.print(currenttime);
    Serial.print(" Lasttime: "); Serial.print(_lastreadtime);
  */
  _lastreadtime = millis();

  data[0] = data[1] = data[2] = data[3] = data[4] = 0;
  
  // now pull it low for ~20 milliseconds
  pinMode(_pin, OUTPUT);
  digitalWrite(_pin, LOW);
  delay(20);
  cli();
  digitalWrite(_pin, HIGH);
  delayMicroseconds(40);
  pinMode(_pin, INPUT);

  // read in timings
  for ( i=0; i< MAXTIMINGS; i++) {
    counter = 0;
    while (digitalRead(_pin) == laststate) {
      counter++;
      delayMicroseconds(1);
      if (counter == 255) {
        break;
      }
    }
    laststate = digitalRead(_pin);

    if (counter == 255) break;

    // ignore first 3 transitions
    if ((i >= 4) && (i%2 == 0)) {
      // shove each bit into the storage bytes
      data[j/8] <<= 1;
      if (counter > _count)
        data[j/8] |= 1;
      j++;
    }

  }

  sei();
  
  /*
  Serial.println(j, DEC);
  Serial.print(data[0], HEX); Serial.print(", ");
  Serial.print(data[1], HEX); Serial.print(", ");
  Serial.print(data[2], HEX); Serial.print(", ");
  Serial.print(data[3], HEX); Serial.print(", ");
  Serial.print(data[4], HEX); Serial.print(" =? ");
  Serial.println(data[0] + data[1] + data[2] + data[3], HEX);
  */

  // check we read 40 bits and that the checksum matches
  if ((j >= 40) && 
      (data[4] == ((data[0] + data[1] + data[2] + data[3]) & 0xFF)) ) {
    return true;
  }
  

  return false;

}